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Topic of this talk

Recently appeared at UAI 2024!

Ongoing work



Background: Quadrature

I = 𝔼X∼π[ f(X)] = ∫𝒳
f(x)π(x)dxQuantity of interest:



Background: Quadrature

x1:N := [x1, ⋯, xN]⊤ ∈ ℝN×dx f(x1:N) := [f(x1), ⋯, f(xN)]⊤ ∈ ℝN,

Quantity of interest:

I ≈ ̂I =
N

∑
i=1

wi f(xi)Estimator: How to choose weights?

Samples Function evaluations

I = 𝔼X∼π[ f(X)] = ∫𝒳
f(x)π(x)dx



Background: Quadrature

Quantity of interest:

̂IMC =
N

∑
i=1

1
N

f(xi)Monte Carlo : Uniform weights -> Sub-optimal

Bayesian Quadrature (BQ): ̂IBQ =
N

∑
i=1

wi f(xi) “Smart” weights

I = 𝔼X∼π[ f(X)] = ∫𝒳
f(x)π(x)dx



Background: Quadrature

Bayesian Quadrature (BQ): ̂IBQ =
N

∑
i=1

wi f(xi) “Smart” weights

• Posit a prior f ∼ GP(0,k)
• Conditioned on function evaluations   f(x1), …, f(xN)

f ∣ f(x1), …, f(xN) ∼ GP(m̄, k̄),

m̄(x) = [k(x, x1), …, k(x, xN)]K−1[ f(x1), …, f(xN)]⊤

• Define . The BQ weightsμ(x) = 𝔼X∼π[k(X, x)]
[w1, …, wN] = [μ(x1), …, μ(xN)]K−1

Smoothness



Background: Quadrature

Bayesian Quadrature (BQ): ̂IBQ =
N

∑
i=1

wi f(xi) “Smart” weights

• What is good about BQ?


• “Smarter” weights ===> Faster convergence


• Finite sample uncertainty about : 


• What is bad about BQ?


• Inversion of Gram matrix 


• Closed-form  

̂IBQ ̂σ2
BQ

𝒪(N3)
μ(x) = 𝔼X∼π[k(X, x)]

Black: Monte Carlo Red: BQ

Reparameterization “trick” (!)

Smoothness



Today: Parametric expectations
I(θ) = 𝔼X∼πθ

[ f(X, θ)] = ∫𝒳
f(x, θ)π(x; θ)dx

•  is the infection rate.

• A prior belief about the distribution of  : .

•  represents the peak number of infections.

•  represents the expected peak number of infections.

x
x π(x; θ)

f(x, θ)
I(θ)

• Example: Susceptible-Infectious-Recovered (SIR)

Given   would be “sufficient” for , provided that  is smooth enough. θ1, …, θT I(θ*) I

Expensive!

• Conditional Expectation: 𝔼X∼π(X∣θ)[ f(X)]



The Setting
Goal: We want to approximate  over some region of the parameter space :I(θ) Θ

θ1:T := [θ1, ⋯, θT]⊤ ∈ ΘT

∀t ∈ {1,…, T}, x(t)
1:N := [x(t)

1 , ⋯, x(t)
N ]⊤ ∈ 𝒳N

∀t ∈ {1,…, T}, f(x(t)
1:N, θt) := [ f(x(t)

1 , θt), ⋯, f(x(t)
N , θt)]⊤ ∈ ℝN

Data: We have the following “data” available:

 samples per tN

I(θ) = 𝔼X∼πθ
[ f(X, θ)] = ∫𝒳

f(x, θ)π(x; θ)dx



Conditional Bayesian Quadrature

θ1:T := [θ1, ⋯, θT]⊤ ∈ ΘT

x(t)
1:N := [x(t)

1 , ⋯, x(t)
N ]⊤ ∈ 𝒳N

f(x(t)
1:N, θt) := [ f(x(t)

1 , θt), ⋯, f(x(t)
N , θt)]⊤ ∈ ℝN

̂IBQ(θ1), σ2
BQ(θ1), …, ̂IBQ(θT), σ2

BQ(θT),
Stage I: Compute  BQ posteriors:T

I(θ) = ∫𝒳
f(x, θ)π(x; θ)dx

̂IBQ(θt) =
N

∑
i=1

wi,t f(x(t)
i , θt)

𝒳

f( ⋅ , θ)



Conditional Bayesian Quadrature

θ1:T := [θ1, ⋯, θT]⊤ ∈ ΘT

xt
1:N := [xt

1, ⋯, xt
N]⊤ ∈ 𝒳N

f(xt
1:N, θt) := [ f(xt

1, θt), ⋯, f(xt
N, θt)]⊤ ∈ ℝN

̂IBQ(θ1), σ2
BQ(θ1), …, ̂IBQ(θT), σ2

BQ(θT),
Stage I: Compute  BQ posteriors:T Stage II: Heteroscedastic GP regression over 

 with outputs from Stage II(θ)

I(θ) = ∫𝒳
f(x, θ)π(x; θ)dx

̂IBQ(θt) =
N

∑
i=1

wi,t f(x(t)
i , θt)

̂ICBQ(θ) := kΘ (θ, θ1:T) (KΘ + diag (σ2
BQ (θ1:T)))

−1
̂IBQ(θ1:T)

̂σCBQ(θ)2 := . . .

𝒳

f(x, θ)

Θ

I(θ)



Convergence guarantees
• Theorem (informal): Under regularity assumptions including

• The samples  are iid from .  are iid from .{x(t)
i }N

i=1 π(x; θt) θ1, …, θT ℚ

•  has smoothness  and     has smoothness .f( ⋅ , θ) sx > dx /2 f(x, ⋅ ) sθ > dθ /2

• The kernels  and  have smoothness  and  respectively.k𝒳 kΘ sx sθ



Convergence guarantees
• Theorem (informal): Under regularity assumptions including

• The samples  are iid from .  are iid from .{x(t)
i }N

i=1 π(x; θt) θ1, …, θT ℚ

•  has smoothness  and     has smoothness .f( ⋅ , θ) sx > dx /2 f(x, ⋅ ) sθ > dθ /2

• The kernels  and  have smoothness  and  respectively.k𝒳 kΘ sx sθ

̂ICBQ − I
L2(Θ)

= 𝒪P (N− sx
dx + T− 1

4 )
BQ rate in N, but non-parametric rate in T?

𝒪P (N− sx
dx + T− sθ

dθ )Change the algorithm slightly, we obtain (!)



Experiment: SIR model

We get much faster convergence than alternatives!
The cost of doing CBQ is negligible compared 
to simulation cost from the SIR model.



Experiment: Curse of dimension

• The rate bears out in practice

• This shows in our convergence rate…

𝒪P (N− sx
dx + T− 1

4 )



Calibration of the CBQ posterior

• The CBQ posterior tends to be poorly 
calibrated when the number of data 
points is extremely small

• But things get better for large  
(although we didn’t study this 
theoretically…)

N, T



Connection to Extrapolation
• The target of interest is I(0) = 𝔼X∼π0

[ f(X)]

• Example 1:  is the power posterior in Bayesian inference. πt

• We are given estimate ̂I(t) ≈ I(t) = 𝔼X∼πt
[ f(X)]

• CBQ: BQ to estimate  for . GP to estimate .


• For the CBQ rate to hold,  is iid. 

̂IBQ(t) t ≠ 0 ̂ICBQ(0)

t1, ⋯, tT Fill distance?



Conclusion and future work
• We proposed CBQ to approximate parametric expectations.

• Plenty of work remaining including:

• Active learning for sequential sample selection.

I(θ) = ∫𝒳
f(x, θ)π(x; θ)dx

• Fast rate of convergence.

• Finite-sample Bayesian uncertainty quantification.



Any Questions?

@Hudson19990518

hudsonchen.github.io



Reparameterization “trick”
• Two major bottlenecks of BQ / CBQ are: 

•  is another random variable with density  which is easy to sample from.


• Suppose we can find an invertible transformation  such that .

U ∼ ν q
Φ X = Φ(U)

• The closed-form kernel mean embedding 


• The  computational cost of inverting the Gram matrix.

μ(x) = 𝔼X∼π[k(X, x)] .
𝒪(N3)

I = ∫ f(x)π(x)dx = ∫ f(Φ(u))q(u)du

̂IBQ = 𝔼U∼ν[k(U, u1:N)]k(u1:N, u1:N)−1( f ∘ Φ)(u1:N)

• The closed-form kernel mean embedding 


•  does not depend on  so can be precomputed.

μ(u) = 𝔼U∼ν[k(U, u)] .
𝔼U∼ν[k(U, u1:N)]k(u1:N, u1:N)−1 f


