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Topic of this talk

Conditional Bayesian Quadrature

Recently appeared at UAI 2024!

Nested Expectations with Kernel Quadrature

Ongoing work



Background: Quadrature

Quantity of interest: [ =Ly [/(X)] = | f(x)r(x)dx
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Background: Quadrature

N
Bayesian Quadrature (BQ): Ipp = Z w; f(x;) “Smart” weights
i=1
* Posita prior f~ GP(0,k) Smoothness

» Conditioned on function evaluations f(x;), ..., f(xy)

f | f(’xl)a af(xN) ~ GP(n_/la ]_C)a
m(x) = [k(x,xy), ..., k(x, xN)]K_l[f(xl), ...,f(xN)]T
- Define u(x) = Ey.__[k(X, x)]. The BQ weights . e © @0 e . -

*  f(x) —— GP mean

w; —— True function

(Wi, oo Wyl = [u(x)), ..., pCey) IK™!



Background: Quadrature

N
Bayesian Quadrature (BQ): Ipp = Z w; f(x;) “Smart” weights
i=1
» What is good about BQ?

 “Smarter” weights ===> Faster convergence Smoothness

A2 & 075,

« Finite sample uncertainty about IABQ: Opp 5o .

< 0.25]

o \ el
@ 0.001 \ s

* What is bad about BQ? Som s ms as

0 75

Black: Monte Carlo Red: BQ

+ Inversion of Gram matrix O(N?)

» Closed-form pu(x) = Ey,_ k(X x)] Reparameterization “trick” (!)



Today: Parametric expectations

£

[(0) = [EXN@[ X,0)l=1 fx0)x(x;0)dx
Jo
- Conditional Expectation: Ey. yg)l f(X)]

« Example: Susceptible-Infectious-Recovered (SIR)
« X is the infection rate.
« A prior belief about the distribution of x : 7(x; ).
« f(x, 0) represents the peak number of infections. Expensive!
- [(0) represents the expected peak number of infections.

Given 0, ..., 07 would be “sufficient” for I(6*), provided that  is smooth enough.



The Setting

Goal: We want to approximate 1(f) over some region of the parameter space ©:

)

10) = By [fX, 0] = | fCx, 0)z(x; O)dx

JX
Data: We have the following “data” available:
QIZT = [91, *eey, QT]T c @T
Vie{l,...,T}, x =" x1"e” N samples per t

lN

Vie (1,...T}, f&".0):=[fx",0), - f),0)]" € RY



Conditional Bayesian Quadrature

@) o 1+@ ... 7T N
X —[x1 , ,xN] eI

" I:N°
[0) =] f(x,0)n(x;0)dx 0,.7:= 1[0, .0, € O
X DL 0) = [f&,0), -, fxP,0)]" € RY

Stage I: Compute 1'BQ posteriors:
IgQ©)), o3q@); .. I3q(0r), 63 (07),

N
Ipo(0) = ) w;, fx.6)
i=1

! *x f(x)

%M .
—— GP mean

<o @ 00 o — 9~ —— True function




Conditional Bayesian Quadrature
Xj =[xl e &N

[0) =] f(x,0)n(x;0)dx 0,.7:=1[0,,,0,]T € OT

JX f(x{;N’ et) = [f(X{, H[)a ”'7f(x]t\[’ et)]T S RN

rn

Stage ll: Heteroscedastic GP regression over
1(0) with outputs from Stage | 1
fCBQ(e) = kg (9, 91:T) <K® + diag <0§Q (91:T>>) iBQ(elzT)

N
Ipo(0) = ) w;, fx.6) )
i=1

Stage I: Compute 1'BQ posteriors:
IgQ©)), o3q@); .. I3q(0r), 63 (07),

fx.0),
—1(0))

\/@M ° W —GP mean
——  GP mean T
| o ® I[zq0)

<o @ 00 o — 9~ —— True function




Convergence guarantees

 Theorem (informal): Under regularity assumptions including

« The samples {xi(t)}f.\il are iid from z(x; 0,). 0,, ..., O areiid from Q.
« f(-,0) has smoothness s. > d_/2 and f(x,-) has smoothness s, > d,/2.

« The kernels kqo- and kg have smoothness s, and s, respectively.



Convergence guarantees

 Theorem (informal): Under regularity assumptions including

« The samples {xi(t)}f.\il are iid from z(x; 0,). 0,, ..., O areiid from Q.
« f(-,0) has smoothness s. > d_/2 and f(x,-) has smoothness s, > d,/2.

« The kernels kqo- and kg have smoothness s, and s, respectively.

LX(©)

BQ rate in N, but non-parametric rate in T?

Sy _ %0
Change the algorithm slightly, we obtain O, (N_d_x + T d@) (1)



Experiment: SIR model
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The cost of doing CBQ is negligible compared
We get much faster convergence than alternatives! to simulation cost from the SIR model.



Experiment: Curse of dimension

* This shows in our convergence rate...

6, (N‘Z_i n T—%>

N 1 %'i"

i * * The rate bears out in practice
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Dimension

— (CBQ — LSMC KLSMC — IS



Calibration of the CBQ posterior

—— N=T=10 N=T=50 —— N=T=100

 But things get better for large N, T’

(although we didn’t study this
theoretically...)

Coverage

« The CBQ posterior tends to be poorly
calibrated when the number of data
points is extremely small

)0 0.2 0.4 0.6 0.8 1.0
Credible Interval



Connection to Extrapolation

. The target of interest is 1(0) = [EXNﬂO[f(X)]
. We are given estimate f(t) ~ [(t) = [EXNﬂt[f(X)]

« Example 1: 7, is the power posterior in Bayesian inference.

. CBQ: BQ to estimate fBQ(t) for t # 0. GP to estimate fCBQ(O).

« For the CBQ rate to hold, #;, ---, frisiid.  Fill distance?



Conclusion and future work

* We proposed CBQ to approximate parametric expectations.

 Fast rate of convergence.

 Finite-sample Bayesian uncertainty quantification. 1) = L

f(x,0)r(x; 0)dx

 Plenty of work remaining including:

 Active learning for sequential sample selection.



'

Any Questions?




Reparameterization “trick”

« Two major bottlenecks of BQ / CBQ are:
« The closed-form kernel mean embedding u(x) = Ey.. [k(X, x)].

. The O(N>) computational cost of inverting the Gram matrix.
- U ~ v is another random variable with density g which is easy to sample from.

 Suppose we can find an invertible transformation ® such thatX = ®(U).

I'= Jf (V7(xX)dx = [f (D(u)g(u)du

iBQ = Ey Jk(U, uy )k, . 30) ' (f 0 @) (utyy)
» The closed-form kernel mean embedding pu(u) = £, [k(U, u)] .
o By [k(U, uy ) 1k(uy.n, 1y.) " does not depend on f'so can be precomputed.



