(De)-regularized Maximum Mean Discrepancy Gradient Flow

Zonghao Chen Aratrika Mustafi Pierre Glaser Anna Korba Arthur Gretton Bharath K. Sriperumbudur

August 15, 2025

Accepted (minor revision) to JMLR

About Me

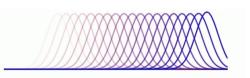
- Zonghao Chen
- 3rd year PhD Student at University College London (UCL)
 - Foundational AI Centre
 - Gatsby Computational Neuroscience Unit (Founded by Hinton in 1998)
- Graduated from Tsinghua University in 2022
 - Department of EE
- Kernel (nonparametric) methods, causal inference, statistical learning theory
- Visiting RIKEN AIP, Tokyo (Summer 2025)

Background

Problem: How to learn a target probability distribution π on \mathbb{R}^d .

- Sampling (e.g. $\pi \propto \exp(-V)$ is the posterior distribution in Bayesian inference).
- Optimizing neural networks (e.g. π is the mean-field limit over parameters of a neural network).
- Generative models (e.g. π is the distribution of an image dataset).





Background: Optimization in the space of probability measures

Problem: How to learn a target probability distribution π on \mathbb{R}^d .

• This problem can be written as an optimization problem on $\mathcal{P}_2(\mathbb{R}^d)$.

$$\operatorname{arg\,min}_{\mu\in\mathcal{P}_2(\mathbb{R}^d)}D(\mu\mid\pi).$$

- Here *D* is a similarity metric or distance, e.g. Kullback–Leibler divergence.
 - $D(\mu|\pi) = 0$ if and only if $\mu = \pi$.
- $\mathcal{P}_2(\mathbb{R}^d)$ denotes the space of probability measures with a finite second moment.
 - We primarily consider $\mathcal{P}_2(\mathbb{R}^d)$ rather than $\mathcal{P}(\mathbb{R}^d)$ for the nice geometrical properties.
- How to find the minimum? Gradient descent!

Background: Euclidean gradient flow

ullet Euclidean gradient flow of an objective $F:\mathbb{R}^d o \mathbb{R}$

$$\partial_t x_t = -v(x_t), \quad v = \nabla F.$$

- ∇F denotes the gradient of F.
- This is the continuous-time analogue of gradient descent:

$$x_{n+1} = x_n - \gamma v(x_n),$$

where $\gamma > 0$ is the step size.

• Gradient flow / descent is widely used to find minimizers of *F*:

$$x^* = \operatorname{arg\,min}_{x \in \mathbb{R}^d} F(x).$$

- Train large scale deep learning models.
- When F is both strongly convex and smooth, Euclidean gradient descent converges exponentially fast [Boyd and Vandenberghe, 2004].

Background: Wasserstein gradient flow

Challenge: How to find $\arg\min_{\mu\in\mathcal{P}_2(\mathbb{R}^d)}D(\mu\mid\pi)$?

- Gradient descent! Wait... How do we define gradients in $\mathcal{P}_2(\mathbb{R}^d)$?
- Endow $\mathcal{P}_2(\mathbb{R}^d)$ with the Wasserstein-2 distance W_2 .

$$W_2^2(\nu,\mu) = \int \|T(x) - x\|^2 d\nu(x) = \|T - \mathrm{Id}\|_{L^2(\nu)}^2.$$

- $W_2^2(\nu,\mu)$ means the minimal energy takes to transport mass from ν to μ .
- $T: \mathbb{R}^d \to \mathbb{R}^d$ is the optimal transport map from ν to μ .
- (\mathcal{P}_2, W_2) can be 'treated' as a Riemann manifold under the Otto's calculus [Otto, 2001].
- The tangent space $\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})$ at $\mu \in \mathcal{P}_{2}(\mathbb{R}^{d})$ is a dense subset of $L^{2}(\mu)$.

$$\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})\subset L^{2}(\mu)$$
 $oldsymbol{\mu}ullet$ $\mathcal{P}_{2}(\mathbb{R}^{d})$

Background: Wasserstein gradient flow

$$\mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})\subset L^{2}(\mu)$$
 $oldsymbol{\mu}ullet}{oldsymbol{arPhi}}_{2}(\mathbb{R}^{d})$

Definition (Wasserstein gradient)

Let $\mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ be a regular functional. The Wasserstein gradient of \mathcal{F} evaluated at $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ is the unique function $\nabla_{W_2} \mathcal{F}(\mu) : \mathbb{R}^d \to \mathbb{R}^d$, s.t. for any $T \in \mathcal{T}_\mu \mathcal{P}_2(\mathbb{R}^d)$,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[\mathcal{F} \left((\operatorname{Id} + \epsilon T)_{\#} \mu \right) - \mathcal{F}(\mu) \right] = \int [\nabla_{W_2} \mathcal{F}(\mu)](x)^{\top} T(x) \, d\mu(x) = \langle \nabla_{W_2} \mathcal{F}, T \rangle_{L^2(\mu)}.$$

• The gradient is defined along a 'curve' $(\mathrm{Id} + \epsilon T)_{\#} \mu$ in $\mathcal{P}_2(\mathbb{R}^d)$.

Background: Wasserstein gradient flow

Definition (Wasserstein gradient flow)

Let $(v_t : \mathbb{R}^d \to \mathbb{R}^d)_{t \geq 0}$ be a family of vector fields and suppose that the random process $(x_t)_{t \geq 0}$ evolve according to $\dot{x}_t = v_t(x_t)$. Then, the law μ_t of x_t evolves according to the continuity equation (in the sense of distributions)

$$\partial_t \mu_t + \nabla \cdot (\mu_t v_t) = 0.$$

In particular, $(\mu_t)_{t\geq 0}$ is called the Wasserstein gradient flow of $\mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ if $v_t = -\nabla_{W_2} \mathcal{F}(\mu_t)$.

Euclidean Gradient Flow

- State space: \mathbb{R}^d
- Objective $F: \mathbb{R}^d \to \mathbb{R}$.
- Update scheme: $\dot{x}_t = v_t(x_t)$, with $v_t = -\nabla F$.

Wasserstein Gradient Flow

- State space: $\mathcal{P}_2(\mathbb{R}^d)$
- Objective $\mathcal{F}: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$:
- Update scheme $\dot{x}_t = v_t(x_t)$, with $v_t = -\nabla_{W_2} \mathcal{F}(\mu_t)$.

Example 1: Langevin diffusion [Jordan et al., 1998]

- Given the target distribution $\pi \propto \exp(-V)$ with $V : \mathbb{R}^d \to \mathbb{R}$.
- ullet The functional $\mathcal{F}_{\mathrm{KL}} = \mathrm{KL}(\cdot \| \pi)$ and its Wasserstein gradient

$$[\nabla_{W_2} \mathcal{F}_{\mathrm{KL}}(\mu)](\cdot) = \nabla V(\cdot) + \nabla \log \mu_t(\cdot).$$

ullet The Wasserstein gradient flow of $\mathcal{F}_{\mathrm{KL}}$

$$\partial_t \mu_t = \nabla \cdot (\mu_t (\nabla V + \nabla \log \mu_t)).$$

 It is equivalent to the Fokker-Planck equation of the Langevin diffusion [Särkkä and Solin, 2019]:

$$\mathrm{d}x_t = -\nabla V(x_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}W_t, \quad \mu_t = \mathrm{Law}(x_t).$$

A standard time-discretization (Euler–Maruyama scheme) is:

$$x_{n+1} = x_n - \gamma \nabla V(x_n) + \sqrt{2\gamma} \, \xi_n, \quad \xi_n \sim \mathcal{N}(0, I_d).$$

Example 2: MMD gradient flow [Arbel et al., 2019]

- Given M i.i.d samples $\{y_i\}_{i=1}^M$ from a target distribution π .
- The functional $\mathcal{F}_{\mathrm{MMD}} = \frac{1}{2}\mathrm{MMD}^2(\cdot \| \pi)$

$$MMD(\mu \| \pi) := \| \int k(x, \cdot) d\mu(x) - \int k(x, \cdot) d\pi(x) \|_{\mathcal{H}},$$

where \mathcal{H} is the RKHS associated with a kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$.

Its Wasserstein gradient

$$[\nabla_{W_2} \mathcal{F}_{\text{MMD}}(\mu)](\cdot) = \nabla \left(\int k(x, \cdot) \, d\mu(x) - \int k(x, \cdot) \, d\pi(x) \right)$$
$$\approx \int \nabla_2 k(x, \cdot) \, d\mu(x) - \frac{1}{M} \sum_{i=1}^M \nabla_2 k(y_i, \cdot).$$

• The Wasserstein gradient flow of $\mathcal{F}_{\mathrm{MMD}}$,

$$\partial_t \mu_t = \nabla \cdot (\mu_t \nabla_{W_2} \mathcal{F}_{\text{MMD}}(\mu_t)), \quad dx_t = -[\nabla_{W_2} \mathcal{F}_{\text{MMD}}(\mu_t)](x_t) dt.$$

• A standard time-discretization (Euler-Maruyama scheme) is:

$$x_{n+1} = x_n - \gamma \nabla_{W_2} \mathcal{F}_{\text{MMD}}(\mu_n)(x_n).$$

Question: When does Wasserstein gradient flow find arg $\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} D(\mu \mid \pi)$?

Definition (Wasserstein Hessian [Villani et al., 2009])

Given any $T \in \mathcal{T}_{\mu}\mathcal{P}_{2}(\mathbb{R}^{d})$ and a curve (constant-speed geodesic) $\rho_{t} = (\mathrm{Id} + tT)_{\#}\mu$ for $0 \leq t \leq 1$, the Wasserstein Hessian of a functional $\mathcal{F} : \mathcal{P}_{2}(\mathbb{R}^{d}) \to \mathbb{R}$ at μ , denoted as Hess $\mathcal{F}_{|\mu}$, is an operator from $L^{2}(\mu)$ to $L^{2}(\mu)$:

$$\left\langle \mathsf{Hess}\,\mathcal{F}_{|\mu}T,T\right\rangle_{L^{2}(\mu)}=\left.\frac{d^{2}}{dt^{2}}\right|_{t=0}\mathcal{F}\left(\rho_{t}\right).$$

• A functional \mathcal{F} is said to be (geodesically) M-smooth at μ if

$$\left\langle \mathsf{Hess}\,\mathcal{F}_{|\mu}\,T,\,T\right
angle_{L^2(\mu)}\leq M\|\,T\|_{L^2(\mu)}.$$

• A functional \mathcal{F} is said to be (geodesically) Λ -convex at μ if

$$\left\langle \mathsf{Hess}\,\mathcal{F}_{\mid\mu}\,T,\,T\right
angle_{L^{2}(\mu)}\geq \Lambda\|\,T\|_{L^{2}(\mu)}.$$

• If \mathcal{F} is both (geodesically) M-smooth and Λ -convex, then $M \geq \Lambda$.

- Let $(\mu_t)_{t\geq 0}$ be the Wasserstein gradient flow of \mathcal{F}
- If \mathcal{F} is Λ -convex with $\Lambda > 0$,

$$\mathcal{F}(\mu_t) - \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu) \le \exp(-2\Lambda t) \Big(\mathcal{F}(\mu_0) - \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu) \Big).$$

- Let $(\mu_n)_{n\in\mathbb{N}}$ be the Wasserstein gradient descent of \mathcal{F} .
- If $\mathcal F$ is Λ -convex with $\Lambda>0$ and M-smooth, and the step size $0<\gamma\leq \frac{1}{M}$,

$$\mathcal{F}(\mu_n) - \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu) \leq \exp(-\gamma \Lambda n) \Big(\mathcal{F}(\mu_0) - \min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} \mathcal{F}(\mu) \Big).$$

 This is the same as convex optimization in Euclidean space [Boyd and Vandenberghe, 2004].

Wasserstein gradient flow of $\mathcal{F}_{\mathrm{KL}}$

- $\pi \propto \exp(-V)$
- Sampling
- When $\pi \propto \exp(-V)$ is strongly log-concave, i.e., $\mathbf{H}V \geq \alpha \mathrm{Id}$, then $\mathcal{F}_{\mathrm{KL}}$ is α -convex.
- Convergence in discrete time [Vempala and Wibisono, 2019]

$$\mathcal{F}_{\mathrm{KL}}(\mu_n \| \pi) \leq \exp(-\alpha \gamma n) \mathcal{F}_{\mathrm{KL}}(\mu_n \| \pi) + \frac{\gamma n \beta^2}{\alpha}.$$

- β is the Lipschitz continuity of V.
- It takes $\mathcal{O}(\frac{1}{\alpha\delta}\log\frac{1}{\delta})$ to reach δ error.

Wasserstein gradient flow of $\mathcal{F}_{\mathrm{MMD}}$

- $\{y_i\}_{i=1}^M$ i.i.d samples from π
- Generative modelling
- When k is bounded and has bounded derivatives, then F_{MMD} is M-smooth and -M-convex.
- Convergence in discrete time [Arbel et al., 2019]

$$\mathcal{F}_{\mathrm{MMD}}(\mu_n,\pi) \leq \frac{W_2^2(\mu_0,\pi)}{\gamma n} + \bar{K}.$$

- \bar{K} is a positive barrier term that does not vanish.
- $\lim_{n\to\infty} \mathcal{F}_{\text{MMD}}(\mu_n, \pi) \neq 0!$

Non-convexity of MMD prevents global convergence

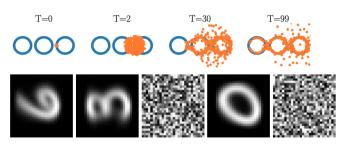


Figure: Belhadji et al. [2025]

- Arbel et al. [2019] proves convergence of MMD flow, yet under noise injection and stringent conditions on the scale of noise.
- Disclaimer: There exists many papers where MMD flow empirically generate high-quality images on with adversarial training of kernels [Galashov et al., 2025], or with non-smooth kernels plus deep neural network distillation [Hertrich et al., 2024, Altekrüger et al., 2023].

Question: Can we find a new objective \mathcal{F} such that it enjoys (geodesic) convexity, similar to $\mathcal{F}_{\mathrm{KL}}$, in the generative modelling setting where only samples are available?

Proposition 1 (MMD and χ^2 -divergence)

Suppose μ is absolutely continuous with respect to π , i.e., $\mu \ll \pi$. Then

$$\mathsf{MMD}^2(\mu\|\pi) = \left\|T_\pi^{rac{1}{2}}\left(rac{\mathrm{d}\mu}{\mathrm{d}\pi}-1
ight)
ight\|_{L^2(\pi)}^2 ext{ and } \chi^2(\mu\|\pi) = \left\|rac{\mathrm{d}\mu}{\mathrm{d}\pi}-1
ight\|_{L^2(\pi)}^2.$$

Here, $T_{\pi}: L^2(\pi) \to L^2(\pi)$ is the kernel integral operator defined as

$$T_{\pi}f(\cdot) = \int k(x,\cdot)f(x) d\pi(x).$$

- Similar to $\mathcal{F}_{\mathrm{KL}}$, $\mathcal{F}_{\chi^2}(\cdot) = \chi^2(\cdot \| \pi)$ is (geodesic) strong convex when π is strongly log-concave [Ohta and Takatsu, 2011].
- An interpolation between MMD^2 and χ^2 ?

DrMMD: An interpolation of MMD and χ^2 -divergence

Definition (De-regularized Maximum Mean Discrepancy (DrMMD))

Suppose $\mu \ll \pi$ where $\mu, \pi \in \mathcal{P}_2(\mathbb{R}^d)$. Then the (de)-regularized maximum mean discrepancy (DrMMD) between μ, π is defined as, for $\lambda > 0$,

$$\mathsf{DrMMD}(\mu \| \pi) = (1+\lambda) \left\| \left((\mathcal{T}_\pi + \lambda \mathrm{Id})^{-1} \; \mathcal{T}_\pi \right)^{rac{1}{2}} \left(rac{\mathrm{d} \mu}{\mathrm{d} \pi} - 1
ight)
ight\|_{L^2(\pi)}^2.$$

Proposition 2 (Interpolation of MMD² and χ^2)

Suppose k is bounded, continuous, and c_0 -universal.

$$\lim_{\lambda \to 0} \mathsf{DrMMD}(\mu \| \pi) = \chi^2(\mu \| \pi), \qquad \lim_{\lambda \to \infty} \mathsf{DrMMD}(\mu \| \pi) = \mathsf{MMD}^2(\mu \| \pi).$$

- Similar idea of spectral regularization has been done for kernel hypothesis testing [Mika et al., 1999, Harchaoui et al., 2007, Hagrass et al., 2024].
- This is known as Tikhonov regularization.

DrMMD: An interpolation of MMD and χ^2

Question: Does DrMMD inherit the advantages of MMD² and χ^2 ?

- ullet Does $\mathcal{F}_{\mathrm{DrMMD}}$ admit finite sample implementation of its Wasserstein gradient flow?
- Is $\mathcal{F}_{\mathrm{DrMMD}}$ (geodesic) strongly convex when π is strongly log-concave?

Assumption 1

 $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a continuous and c_0 -universal kernel. The kernel is bounded by K, its first order derivatives bounded by K_{1d} and second order derivatives bounded by K_{2d} .

 This condition is satisfied by Gaussian kernels, Matérn kernels and inverse multiquadratic kernels.

Finite-sample estimate

• Let $\Sigma_{\pi}: \mathcal{H} \to \mathcal{H}$ denote the covariance operator $\Sigma_{\pi} = \mathbb{E}_{\pi}[k(x,\cdot) \otimes k(x,\cdot)]$.

$$\langle f, \Sigma_{\pi} f \rangle_{\mathcal{H}} = \mathbb{E}_{\pi} [f(X)^2].$$

Proposition 3 (Finite-sample estimate of the Wasserstein gradient of $\mathcal{F}_{\text{DrMMD}}$)

The Wasserstein gradient of $\mathcal{F}_{DrMMD}(\cdot) = DrMMD(\cdot || \pi)$ at μ is $(1 + \lambda)\nabla h_{\mu,\pi}(\cdot) : \mathbb{R}^d \to \mathbb{R}^d$, where

$$h_{\mu,\pi} = (\mathcal{T}_\pi + \lambda \mathrm{I})^{-1} \; \mathcal{T}_\pi \left(rac{\mathrm{d}\mu}{\mathrm{d}\pi} - 1
ight) = (\mathbf{\Sigma}_\pi + \lambda \mathrm{I})^{-1} \left(\int k(x,\cdot) \mathrm{d}\mu - \int k(x,\cdot) \mathrm{d}\pi
ight).$$

Given empirical distributions $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$ and $\hat{\pi} = \frac{1}{M} \sum_{i=1}^{M} y_i$. Given the Gram matrices $K_{xx} \in \mathbb{R}^{N \times N}$, $K_{yy} \in \mathbb{R}^{M \times M}$, $K_{xy} \in \mathbb{R}^{N \times M}$.

$$h_{\hat{\mu},\hat{\pi}}(\cdot) = \frac{1}{N\lambda} k \left(\cdot, x_{1:N}\right) \mathbb{1}_{N} - \frac{1}{M\lambda} k \left(\cdot, y_{1:M}\right) \mathbb{1}_{M} - \frac{1}{M\lambda} k \left(\cdot, y_{1:M}\right) \left(M\lambda I + K_{yy}\right)^{-1} K_{yx} \mathbb{1}_{N} + \frac{1}{M\lambda} k \left(\cdot, y_{1:M}\right) \left(M\lambda I + K_{yy}\right)^{-1} K_{yy} \mathbb{1}_{M}.$$

Wasserstein Hessian and convexity

Proposition 4 (Wasserstein Hessian of \mathcal{F}_{χ^2})

Suppose k satisfies Assumption 1. Let $\mu, \pi \in \mathcal{P}_2(\mathbb{R}^d)$.

$$\left|\left\langle \mathsf{Hess}\,\mathcal{F}_{\mathrm{DrMMD}|\mu}\,\mathcal{T},\,\mathcal{T}\right\rangle_{L^2(\mu)}\right| \leq 2(1+\lambda) \tfrac{2\sqrt{KK_{2d}}+K_{1d}}{\lambda}\|\mathcal{T}\|_{L^2(\mu)}^2,\quad\forall\,\mathcal{T}\in\mathcal{T}_{\mu}\mathcal{P}_2(\mathbb{R}^d).$$

Let π be α -strongly log-concave, i.e., $\pi \propto \exp(-V)$, $\mathbf{H}V \succeq \alpha I$, and assume additionally that $x \mapsto \mathbf{H}V(x)$ is continuous. Then for all μ such that $x \mapsto \nabla \log \mu(x)$ is continuous and $\frac{\mathrm{d}\mu}{\mathrm{d}\pi} - 1 \in \mathcal{H}$,

$$\left\langle \mathsf{Hess}\,\mathcal{F}_{\mathrm{DrMMD}|\mu}\,T,\,T\right
angle_{L^{2}(\mu)} \geq \alpha(1+\lambda)\int rac{\mathrm{d}\mu}{\mathrm{d}\pi}(x)\|\,T(x)\|^{2}\mathrm{d}\mu - R(\lambda,\mu,\,T),$$

where $\lim_{\lambda\to 0} R(\lambda,\mu,T) = 0$.

- DrMMD is more convex when $\lambda \to 0$ and more smooth when $\lambda \to \infty$.
- Unfortunately, $\frac{\mathrm{d}\mu}{\mathrm{d}\pi}-1\in\mathcal{H}$ is too strong in practice.

Poincaré inequality

- Exponential convergence to the global minima (not necessarily unique) still hold under a Polyak-Łojasiewicz inequality, a strict relaxation of strong convexity.
- $\mathcal{F}_{\chi^2} = \chi^2(\cdot \| \pi)$ satisfies a (modified) PL inequality with α if, for all $\mu \in \mathcal{P}_2(\mathbb{R}^d)$,

$$\chi^{2}(\mu\|\pi) \leq \frac{1}{2\alpha} \left\| \nabla_{W_{2}} \mathcal{F}_{\chi^{2}}(\cdot) \right\|_{L^{2}(\pi)}^{2} = \frac{1}{2\alpha} \left\| \nabla \left(\frac{\mathrm{d}\mu}{\mathrm{d}\pi} \right) (x) \right\|_{L^{2}(\pi)}^{2}.$$

• It is implied by π satisfying the Poincaré inequality $(f = \frac{\mathrm{d}\mu}{\mathrm{d}\pi} - 1)$.

Definition (Poincaré inequality)

We say that π satisfies a Poincaré inequality with constant C_P if for all $f, \nabla f \in L^2(\pi)$,

$$\operatorname{Var}_{\pi}[f] \leq C_{P}\mathbb{E}_{\pi}\left[\|\nabla f\|^{2}\right].$$

Furthermore, π satisfies a Poincaré with constant α if π is α -log concave.

 Poincaré inequality is a strict relaxation of strong log concavity. It is satisfied by mixture of Gaussians. It is invariant under Lipschitz perturbations [Bakry et al.,

Poincaré inequality

Proposition 5 (Exponential convergence of \mathcal{F}_{χ^2} gradient flow [Chewi et al., 2020])

Suppose that π satisfies a Poincaré inequality with constant C_P . Let $(\mu_t)_{t\geq 0}$ be the Wasserstein gradient flow of \mathcal{F}_{χ^2} . Then, for any $T\geq 0$,

$$\mathrm{KL}\left(\mu_T \| \pi\right) \leq \exp\left(-\frac{2T}{C_P}\right) \mathrm{KL}\left(\mu_0 \| \pi\right).$$

For any t > 0,

$$\partial_{t} \mathrm{KL}\left(\mu_{t} \| \pi\right) = -2\mathbb{E}_{\mu_{t}} \left\langle \nabla \log \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}, \nabla \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi} \right\rangle = -2\mathbb{E}_{\pi} \left[\left\| \nabla \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi} \right\|^{2} \right]$$

$$\stackrel{(*)}{\leq} -\frac{2}{C_{P}} \chi^{2}\left(\mu_{t} \| \pi\right) \leq -\frac{2}{C_{P}} \mathrm{KL}\left(\mu_{t} \| \pi\right).$$

• (*) holds by the Poincaré inequality.

DrMMD: An interpolation of MMD and χ^2

Question: Does DrMMD inherit the advantages of MMD² and χ^2 ?

- ullet Does $\mathcal{F}_{\mathrm{DrMMD}}$ admit finite sample implementation of its Wasserstein gradient flow?
- Is \mathcal{F}_{DrMMD} (geodesic) convex when π is log-concave?
- Does \mathcal{F}_{DrMMD} satisfy a (modified) PL condition when π satisfies a Poincaré inequality?
- Let $(\mu_t)_{t\geq 0}$ be the Wasserstein gradient flow of $\mathcal{F}_{\mathrm{DrMMD}}$ with a continuity equation

$$\partial_t \mu_t +
abla \cdot (\mu_t (1+\lambda)
abla h_{\mu_t,\pi}) = 0, \quad h_{\mu_t,\pi} = (\mathcal{T}_\pi + \lambda \mathrm{I})^{-1} \mathcal{T}_\pi \left(\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} - 1 \right).$$

PL condition of $\mathcal{F}_{\mathrm{DrMMD}}$

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{KL}\left(\mu_{t}\|\pi\right) \\ &= -\int \nabla h_{\mu_{t},\pi}(x)^{\top}\nabla\log\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\,\mathrm{d}\mu_{t} \\ &= -\int \nabla h_{\mu_{t},\pi}(x)^{\top}\nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\,\mathrm{d}\pi \\ &= -\int \left(\nabla h_{\mu_{t},\pi}(x) - \nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\right)^{\top}\nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\,\mathrm{d}\pi - \int \left\|\nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\right\|^{2}\,\mathrm{d}\pi \\ &= -\int \left(\nabla h_{\mu_{t},\pi}(x) - \nabla\left(\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x) - 1\right)\right)^{\top}\nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\,\mathrm{d}\pi - \int \left\|\nabla\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\right\|^{2}\,\mathrm{d}\pi. \end{split}$$

Apply integration by parts for the first term.

PL condition of $\mathcal{F}_{\mathrm{DrMMD}}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{KL}\left(\mu_{t} \| \pi\right) \\
= \int \left(h_{\mu_{t},\pi}(x) - \left(\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x) - 1\right)\right) \nabla \cdot \left(\pi(x) \nabla \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\right) \mathrm{d}x - \int \left\|\nabla \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}(x)\right\|^{2} \mathrm{d}\pi \\
\leq \left\|h_{\mu_{t},\pi} - \left(\frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi} - 1\right)\right\|_{L^{2}(\pi)} \left\|\frac{\nabla \cdot \left(\pi \nabla \frac{\mathrm{d}\mu_{t}}{\mathrm{d}\pi}\right)}{\pi}\right\|_{L^{2}(\pi)} - \frac{1}{C_{P}} \mathrm{KL}\left(\mu_{t} \| \pi\right),$$

- The first term is bounded by Cauchy-Schwartz inequality, and the second term is bounded by the Poincaré inequality with C_P.
- Suppose $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} 1 \in \mathsf{Ran}(T^r_\pi)$ with r > 0.

$$\left\|h_{\mu_t,\pi}-\left(rac{\mathrm{d}\mu_t}{\mathrm{d}\pi}-1
ight)
ight\|_{L^2(\pi)}\leq \lambda^r\left\|q_t
ight\|_{L^2(\pi)}, ext{ where } h_{\mu_t,\pi}=T_\pi^rq_t.$$

- $h_{\mu_t,\pi} = (T_\pi + \lambda I)^{-1} T_\pi (\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} 1)$
- Similar results have been established in kernel ridge regression [Cucker and Zhou, 2007].

PL condition of $\mathcal{F}_{\mathrm{DrMMD}}$

Proposition 6 (PL condition of $\mathcal{F}_{\mathrm{DrMMD}}$)

Let $(\mu_t)_{t\geq 0}$ be the Wasserstein gradient flow of $\mathcal{F}_{\mathrm{DrMMD}}$. Suppose the kernel satisfied Assumption 1. Suppose the target distribution π satisfies a Poincaré inequality with constant C_P . Suppose $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} - 1 \in \mathrm{Ran}(T_\pi^r)$ with r > 0, i.e., there exists $q_t \in L^2(\pi)$ such that $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} - 1 = T_\pi^r q_t$. Suppose $\|\nabla(\log \pi)^\top \nabla(\frac{d\mu_t}{d\pi})\|_{L^2(\pi)} \leq \mathcal{J}_t$ and $\|\Delta(\frac{d\mu_t}{d\pi})\|_{L^2(\pi)} \leq \mathcal{I}_t$. Then, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{KL}\left(\mu_{t}\|\pi\right)\leq-\frac{1}{C_{P}}\mathrm{KL}\left(\mu_{t}\|\pi\right)+\lambda^{r}(\mathcal{J}_{t}+\mathcal{I}_{t}).$$

- When $\lambda = 0$, we recover the PL condition of χ^2 divergence.
- \mathcal{J}_t and \mathcal{I}_t are additional regularity conditions.
- Compared with the initial regularity condition $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} 1 \in \mathcal{H}$ required for the (geodesic) convexity of $\mathcal{F}_{\mathrm{DrMMD}}$, $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi} 1 \in \mathrm{Ran}(\mathcal{T}^r_\pi)$ is a strict relaxation when $0 < r < \frac{1}{2}$.

Interpolation space $Ran(T_{\pi}^{r})$

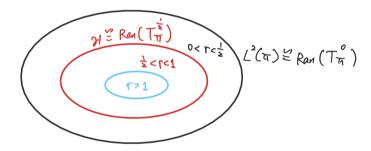


Figure: Visualization of Ran(T_{π}^{r}).

- Large *r* indicates larger smoothness.
- Ran $(T_{\pi}^0) \cong L^2(\pi)$ and Ran $(T_{\pi}^{\frac{1}{2}}) \cong \mathcal{H}$.

Convergence of DrMMD gradient flow

Theorem 1 (Convergence of DrMMD gradient flow)

In addition to the assumptions of the proposition of PL condition on $\mathcal{F}_{\mathrm{DrMMD}}$. If $\|q_t\|_{L^2(\pi)} \leq Q$, $\mathcal{J}_t \leq \mathcal{J}$, $\mathcal{I}_t \leq \mathcal{I}$ for all $0 \leq t \leq T$, where Q, \mathcal{J} , and \mathcal{I} are positive constants independent of λ , then for any $T \geq 0$,

$$\mathrm{KL}\left(\mu_T\|\pi\right) \leq \exp\left(-\frac{2(1+\lambda)}{C_P}T\right)\mathrm{KL}\left(\mu_0\|\pi\right) + \lambda^r C_P Q(\mathcal{J} + \mathcal{I}).$$

• When $\lambda = 0$, it recovers the exponential convergence of χ^2 flow.

$$\mathrm{KL}\left(\mu_T \| \pi\right) \leq \exp\left(-\frac{2}{C_P}T\right) \mathrm{KL}\left(\mu_0 \| \pi\right).$$

- Larger r means more regularity of the trajectory and thus smaller bias.
- Smaller Poincaré ($C_P = 1/\alpha$) means faster convergence.
- For continuous time DrMMD flow, we would want $\lambda \to 0$ for 'convexity', however, that is not the case for discrete time flow.

DrMMD gradient descent

DrMMD gradient flow (continuity equation)

$$\partial_t \mu_t + \nabla \cdot (\mu_t (1+\lambda) \nabla h_{\mu_t,\pi}) = 0$$

• DrMMD gradient descent: for step size $\gamma > 0$,

$$\mu_{n+1} = (\mathrm{Id} + \gamma(1+\lambda)\nabla h_{\mu_n,\pi})_{\#}\mu_n.$$

ullet Recall the Wasserstein Hessian of $\mathcal{F}_{\mathrm{DrMMD}}$

$$\left|\left\langle \mathsf{Hess}\,\mathcal{F}_{\mathrm{DrMMD}|\mu}\,\mathcal{T},\,\mathcal{T}\right\rangle_{L^2(\mu)}\right| \leq 2(1+\lambda)\frac{2\sqrt{\mathsf{K}\mathsf{K}_{2d}+\mathsf{K}_{1d}}}{\lambda}\|\,\mathcal{T}\|_{L^2(\mu)}^2,\quad\forall\,\mathcal{T}\in\mathcal{T}_{\mu}\mathcal{P}_2(\mathbb{R}^d).$$

• Taking $\lambda \to 0$ breaks the smoothness of $\mathcal{F}_{\mathrm{DrMMD}}$.

Convergence of DrMMD gradient descent

Proposition 7 (Descent lemma of DrMMD gradient descent)

Let $(\mu_n)_{n\in\mathbb{N}}$ be the Wasserstein gradient descent of $\mathcal{F}_{\mathrm{DrMMD}}$. Suppose $\pi \propto \exp(-V)$ with $HV \preceq \beta I$. Suppose all assumptions in the proposition of the PL condition on $\mathcal{F}_{\mathrm{DrMMD}}$ hold. Suppose the step size γ is small enough.

$$\operatorname{KL}\left(\mu_{n+1}\|\pi\right) - \operatorname{KL}\left(\mu_{n}\|\pi\right) \leq -\frac{2}{C_{P}}\chi^{2}\left(\mu_{n}\|\pi\right)\gamma + \underbrace{\gamma\lambda^{r}Q(\mathcal{J}+\mathcal{I})}_{Approximation\ error} + \underbrace{\gamma^{2}\beta\chi^{2}\left(\mu_{n}\|\pi\right)\frac{K_{1d}+K_{2d}}{\lambda}}_{Discretization\ error}$$

- A trade-off between the approximation error and the time-discretization error.
- Optimal choice of adaptive λ_n at each iterate n:

$$\lambda_n = \left(2\gamma \chi^2 \left(\mu_n \| \pi\right) \frac{\beta(K_{1d} + K_{2d})}{Q(\mathcal{J} + \mathcal{I})}\right)^{\frac{1}{r+1}} \propto \chi^2 \left(\mu_n \| \pi\right)^{\frac{1}{r+1}}$$

• At the start, we want a larger λ to have more smoothness; when closer to the convergence, we want a smaller λ to operate in the χ^2 regime to better catch the difference of the distributions.

Convergence of DrMMD gradient descent

Theorem 2 (Convergence of DrMMD gradient descent)

Let $(\mu_n)_{n\in\mathbb{N}}$ be the Wasserstein gradient descent of $\mathcal{F}_{\mathrm{DrMMD}}$. Suppose all conditions from the descent lemma hold. Then, for any $n_{\mathsf{max}} \in \mathbb{N}$,

$$\begin{split} \operatorname{KL}\left(\mu_{n_{\mathsf{max}}} \| \pi\right) &\leq \exp\left(-\frac{2n_{\mathsf{max}}\gamma}{C_P}\right) \operatorname{KL}\left(\mu_0 \| \pi\right) \\ &+ \gamma^{\frac{r}{r+1}} C_P Q^{\frac{2r+1}{r+1}} \left(\left(K_{1d} + K_{2d}\right)\beta\right)^{\frac{r}{r+1}} (\mathcal{J} + \mathcal{I})^{\frac{1}{r+1}} \end{split}$$

- To reach error $\mathrm{KL}\left(\mu_{n_{\max}} \| \pi\right) \leq \delta$, it takes $\mathcal{O}((\frac{1}{\delta})^{\frac{r+1}{r}} \log \frac{1}{\delta})$ iterations.
- By comparison, for Langevin Monte Carlo, it takes $\mathcal{O}(\frac{1}{\delta}\log\frac{1}{\delta})$ [Chewi et al., 2024].
- DrMMD gradient descent takes more iterations due to the additional approximation error $\mathcal{O}(\lambda^r)$, but it operates without the knowledge of potential V and only requires $\Sigma_{\pi} = \int k(x,\cdot) \otimes k(x,\cdot) \, \mathrm{d}\pi$ and the embedding $\int k(x,\cdot) \, \mathrm{d}\pi$.

Particle DrMMD gradient descent

- To operate in the setting of generative models, we only have access to samples.
- We are given N samples from the initial distribution $\{x_i^{(0)}\}_{i=1}^N \sim \mu_0$ and M samples from the target distribution $\{y_i\}_{i=1}^M \sim \pi$.
- The DrMMD particle descent from time n to time n + 1, is defined as

$$x_i^{(n+1)} = x_i^{(n)} - \gamma (1 + \lambda_n) \nabla h_{\hat{\mu}_n, \hat{\pi}}(x_i^{(n)}), \quad i = 1, \dots, N.$$

- $h_{\hat{\mu}_n,\hat{\pi}}$ admits a closed-form expression with Gram matrices.
- λ_n is taken to be proportionate to $DrMMD(\hat{\mu}_n || \hat{\pi})^{\frac{1}{r+1}}$.
- r is selected from a set $\{0.1, 0.2, ..., 1.0\}$.

Conclusions

- We propose DrMMD gradient flow as an interpolation of MMD gradient flow and χ^2 gradient flow.
- DrMMD gradient flow / descent has global convergence results, compared to MMD flow, under an adaptive regularization parameter λ .
- This justifies the application of adaptive kernels in recent MMD flow (MMD GAN) papers that achieve SOTA empirical performances.
- More in the paper https://arxiv.org/pdf/2409.14980.
 - Empirical results on synthetic datasets.
 - An example of DrMMD flow with a Gaussian target distribution π which satisfies all conditions in the theorems.
 - Finite-particle convergence results with propagation of chaos bound.

- F. Altekrüger, J. Hertrich, and G. Steidl. Neural wasserstein gradient flows for maximum mean discrepancies with riesz kernels. *arXiv preprint arXiv:2301.11624*, 2023.
- M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradient flow. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates. Inc., 2019.
- D. Bakry, I. Gentil, M. Ledoux, et al. *Analysis and geometry of Markov diffusion operators*, volume 103. Springer, 2014.
- A. Belhadji, D. Sharp, and Y. Marzouk. Weighted quantization using mmd: From mean field to mean shift via gradient flows. arXiv preprint arXiv:2502.10600, 2025.
- S. P. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- S. Chewi, T. Le Gouic, C. Lu, T. Maunu, and P. Rigollet. SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 2098–2109. Curran Associates, Inc., 2020.

- S. Chewi, M. A. Erdogdu, M. Li, R. Shen, and M. S. Zhang. Analysis of Langevin Monte Carlo from Poincare to log-Sobolev. *Foundations of Computational Mathematics*, pages 1–51, 2024.
- F. Cucker and D. X. Zhou. *Learning Theory: An Approximation Theory Viewpoint*, volume 24. Cambridge University Press, 2007.
- A. Galashov, V. D. Bortoli, and A. Gretton. Deep MMD gradient flow without adversarial training. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Pf85K2wtz8.
- The Annals of Statistics, 52(3):1076–1101, 2024.

 Z. Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel Fisher

O. Hagrass, B. K. Sriperumbudur, and B. Li. Spectral regularized kernel two-sample tests.

- discriminant analysis. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, *Advances in Neural Information Processing Systems*, volume 20. Curran Associates, Inc., 2007.
- J. Hertrich, C. Wald, F. Altekrüger, and P. Hagemann. Generative sliced MMD flows with riesz kernels. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=VdkGRV1vcf.
- R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker–Planck equation. *SIAM Journal on Mathematical Analysis*, 29(1):1–17, 1998.

- S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In *Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468)*, pages 41–48, 1999.
- S.-i. Ohta and A. Takatsu. Displacement convexity of generalized relative entropies. *Advances in Mathematics*, 228(3):1742–1787, 2011.
- F. Otto. The geometry of dissipative evolution equations: the porous medium equation. 2001.
- S. Särkkä and A. Solin. *Applied stochastic differential equations*, volume 10. Cambridge University Press, 2019.
- S. Vempala and A. Wibisono. Rapid convergence of the unadjusted Langevin algorithm: Isoperimetry suffices. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
- C. Villani et al. Optimal Transport: Old and New, volume 338. Springer, 2009.