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Problem: How to learn a target probability distribution 7 on RY. )

e Sampling (e.g: 7 ox exp(—V) is the posterior distribution in Bayesian inference).

e Optimizing neural networks (e.g: 7 is the mean-field limit over parameters of a
neural network).

® Generative models (e.g: 7 is the distribution of an image dataset).

Source and Target distribution
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Background: Optimization in the space of probability measures

Problem: How to learn a target probability distribution = on RY.

This problem can be written as an optimization problem on Pz(Rd).

arg min,cp, ey D(1 | ).

Here D is a similarity metric or distance, e.g. Kullback—Leibler divergence.
® D(p|m) =0 if and only if p = 7.
P>(R?) denotes the space of probability measures with a finite second moment.
® We primarily consider P»(R9) rather than P(RY) for the nice geometrical properties.

How to find the minimum? Gradient descent!
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Background: Euclidean gradient flow

e Euclidean gradient flow of an objective F : RY — R

Orxt = —v(xt), v =VF.

VF denotes the gradient of F.
This is the continuous-time analogue of gradient descent:

Xn+1 = Xp — ’YV(Xn)a

where v > 0 is the step size.

Gradient flow / descent is widely used to find minimizers of F:
x* = arg min,cpa F(x).

® Train large scale deep learning models.

When F is both strongly convex and smooth, Euclidean gradient converges
exponentially fast [Boyd and Vandenberghe, 2004].
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Background: Wasserstein gradient flow

Challenge: How to find arg min,,cp,rey D(1 | 7)? |

Gradient descent! Wait... How do we define gradients in P,(R9)?
Endow P»(RY) with the Wasserstein-2 distance Ws.

W2, 1) = [IT(x) = x|Pdv(x) = | T = 1d|[2,,-

® W2(v, 1) means the takes to transport mass from v to p.

® T:R?Y = RY s the optimal transport map from v to p.
(P2, Wa) can be 'treated’ as a Riemann manifold under the Otto’s calculus [Otto,
2001].
The tangent space 7, P2(R9) at pu € P2(R9) is a dense subset of L2?(p).

TPa(RY) € L¥ ()
ll, o

Pa(RY)
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Background: Wasserstein gradient flow

T P2(RY) C L¥ ()

pl ‘ P (Rd)

Definition (Wasserstein gradient)

Let F : P2(RY) — R be a regular functional. The Wasserstein gradient of F evaluated at
€ P2(R?) is the unique function Vy, F (1) : R — RY, s.t. for any T € T,P2(RY),

m ¢ 1 (14 eTyn) = F)) = [[PwF (1607 T du) = (V. Ty

li
e—0

® The gradient is defined along a ‘curve’ (Id + € T)4pu in Pa(RY).
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Background: Wasserstein gradient flow

Definition (Wasserstein gradient flow)

Let (v : RY — Rd)tzo be a family of vector fields and suppose that the random process
(xt)¢>0 evolve according to X; = v¢(x¢). Then, the law i of x; evolves according to the
continuity equation (in the sense of distributions)

at/lt + V- (,UJtVt) =0.

In particular, (ut)r>0 is called the Wasserstein gradient flow of F : Pp(R9) — R if
Ve = _VW2]:(/Lt)-

Euclidean Gradient Flow Wasserstein Gradient Flow
e State space: RY ® State space: P>(RY)
e Objective F : RY — R. ® Objective F : Po(RY) — R:
® Update scheme: Xx; = v4(x;), with ® Update scheme x; = v¢(x¢), with
vi = —VF. ve = =V, F(pe).
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Example 1: Langevin diffusion

® Given the target distribution 7 oc exp(—V) with V : RY — R.
¢ The functional Fx1, = KL(-||7) and its Wasserstein gradient

[Vw, Frr(w)](-) = VV(:) + Vlog pe ().
® The Wasserstein gradient flow of Fxr,
Ot = V- (e (VV + Vlog put)) -

® |t is equivalent to the Fokker—Planck equation of the Langevin diffusion [Sarkka and
Solin, 2019]:

dXt =-V V(Xt) dt + \/§th, Mt = LaW(Xt).
e A standard time-discretization (Euler-Maruyama scheme) is:

Xnt1 = Xn — YV V(x0) + /27 En,  En ~ N(0, Iy).
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Example 2: MMD gradient flow

® Given M i.i.d samples {y;}M, from a target distribution 7.
® The functional Fyvp = %MMD2(-H7r)

MMD (pu|7) := ([ k(x, -)dp(x) = [ k(x,-)dm(x) 13,

where # is the RKHS associated with a kernel k : R? x R — R.
® |ts Wasserstein gradient

[V Fann ()1(-) = V([ k(x, ) du(x) = [ k(x; ) dm(x))
~ [ Vak(x,) du(x) = 45 321, Vak(yi.)-
® The Wasserstein gradient flow of Fyvp,
Orpe = V- (e Vo Funvip (e)) - dxe = — [V, P ()] (xe) dt.
® A standard time-discretization (Euler-Maruyama scheme) is:

Xp41 = Xn — ’YVW2]:MMD(MH)(XH)'
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Convexity and Smoothness

Question: When does Wasserstein gradient flow find arg min,,cp,gey D( | 7)? J

Definition (Wasserstein Hessian

Given any T € 7, P2(R9) and a curve (constant-speed geodesic) p; = (Id + tT)u for
0 <t <1, the Wasserstein Hessian of a functional F : ’Pz(]Rd) — R at u, denoted as

Hess Fj,,, is an operator from L?(y) to L?(p):

(Hess Flu T, T) o = 52| _ F (pe)-

e A functional F is said to be (geodesically) V-smooth at p if
(Hess 7, T, T>L2 < MT | 2-

e A functional F is said to be (geodesically) A\-convex at u if
(Hess Fiu T, T) 12,y = M T2

e If F is both (geodesically) M-smooth and A-convex, then M > A. o



Convexity and Smoothness

® Let (ut)e>0 be the Wasserstein gradient of F
e |f F is A-convex with A > 0,

F(j1e) = min, e, aey F(1) < exp(—2A¢) (F(p0) = min,,epze) F1)).

Let (1n)nen be the Wasserstein gradient of F.

If F is A-convex with A > 0 and M-smooth, and the step size 0 < v < ﬁ

F(pn) — min,cp,ray F (1) < exp(—yAn) (.7-"(,u0) — Min,cp,(rd) f(u)).

This is the same as convex optimization in Euclidean space [Boyd and
Vandenberghe, 2004].
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Convexity and Smoothness

Wasserstein gradient flow of Fxkr,

7w x exp(—V)
Sampling
When 7 o exp(—V) is strongly

log-concave, i.e., HV > ald, then
FK1, Is c-convex.

Convergence in discrete
time [Vempala and Wibisono, 2019]

2

Fi, (n]|m) < exp(—ayn)Fgr, (pa||7) + 122,

B is the Lipschitz continuity of V.
It takes O(L log 1) to reach § error.

Wasserstein gradient flow of Fynip
o {y;}M i.i.d samples from 7
® Generative modelling

® When k is bounded and has bounded
derivatives, then Fynvp is M-smooth
and —M-convex.

e Convergence in discrete time [Arbel
et al., 2019]

W2 —
Fnmp (pn, m) < % + K.

e K is a positive barrier term that does
not vanish.

® limp—o0 FMMD(ftn, m) # 0!
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Non-convexity of MMD prevents global convergence

T=0 T=2 T=30 T=99

OO0 OGID Oy OGK)

Figure: Belhadji et al. [2025]

o Arbel et al. [2019] proves convergence of MMD flow, yet under noise injection and
stringent conditions on the scale of noise.

® Disclaimer: There exists many papers where MMD flow empirically generate
high-quality images on with adversarial training of kernels [Galashov et al., 2025], or
with non-smooth kernels plus deep neural network distillation [Hertrich et al., 2024,
Altekriiger et al., 2023].
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Convexity and Smoothness

Question: Can we find a new objective F such that it enjoys (geodesic) convexity,
similar to Fkr,, in the generative modelling setting where only samples are available? ‘

Proposition 1 (MMD and x2-divergence)

Suppose 1 is absolutely continuous with respect to «, i.e., u < 7. Then

2
T%@ﬂ—1)
™ \dm

L2(x)

2
dp _
dm 1

MMD?2 =
(i) ()

and x2(sl|m) = |

Here, Ty : L?(m) — L?(x) is the kernel integral operator defined as
Txf(:) = [ k(x,)f(x) dm(x).

® Similar to Fkr, Fye2(-) = x*(+[|7) is (geodesic) strong convex when 7 is strongly
log-concave [Ohta and Takatsu, 2011].
e An interpolation between MMD? and y2?
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DrMMD: An interpolation of MMD and y?-divergence

Definition (De-regularized Maximum Mean Discrepancy (DrMMD))

Suppose p < 7 where p, m € P2(RY). Then the (de)-regularized maximum mean
discrepancy (DrMMD) between p, 7 is defined as, for A > 0,
1 2
DrMMD (i) = (1 + \) H ((T7r + Ad)~! Tﬂ) : (j—ﬁ - 1)

12(r)

Proposition 2 (Interpolation of MMD? and ?)

Suppose k is bounded, continuous, and cy-universal.

limy_,0 DIMMD (p|| ) = x?(pe||70), limy—0o DIMMD (2| 7) = MMD? (|| 7).

e Similar idea of spectral regularization has been done for kernel hypothesis
testing [Mika et al., 1999, Harchaoui et al., 2007, Hagrass et al., 2024].

® This is known as Tikhonov regularization.
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DrMMD: An interpolation of MMD and Xz

Question: Does DrMMD inherit the advantages of MMD? and y2?
® Does Fpmmp admit finite sample implementation of its Wasserstein gradient flow?

® Is Fp,mMp (geodesic) strongly convex when 7 is strongly log-concave?

k:RYxRY — R is a continuous and co-universal kernel. The kernel is bounded by K, its
first order derivatives bounded by K14 and second order derivatives bounded by Kog.

® This condition is satisfied by Gaussian kernels, Matérn kernels and inverse
multiquadratic kernels.
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Finite-sample estimate

® Let X, : H — H denote the covariance operator ¥, = E.[k(x, ) ® k(x,-)].
(F,Xxf)n = Eﬂ[f(X)2]~

Proposition 3 (Finite-sample estimate of the Wasserstein gradient of Fp,vmp)

The Wasserstein gradient of Fpyump(-) = DrMMD(+||7) at p is
(1 +A)Vh, () : RY — RY, where

P = (T + A7 T ($ = 1) = (Tr + XD (J K(x, )dps — [ K(x,-)dm).

Given empirical distributions fi = % Z,N:l X; and & = ﬁ Z,"il yi. Given the Gram
matrices Ky, € RVXN, Kyy € RMxM Ky € RNXM:

hﬁ,fr(') (oxen) In — sk (o vim) Im — sk Gy yim) (MAL+ Ky ) ™ Ky

Lk
sk (o y )(M)‘H'Kyy)_l Ky Lm-

E‘H 2‘._.
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Wasserstein Hessian and convexity

Proposition 4 (Wasserstein Hessian of F,2)

Suppose k satisfies Assumption 1. Let p, 7 € Pa(RY).

[(Hess ooy T, T) 1| <20+ N2EBeH T2, 0 VT € TPo(RY).

L2(p)

Let m be a-strongly log-concave, i.e., m < exp(—V), HV = al, and assume additionally
that x — HV/(x) is continuous. Then for all . such that x — V log u(x) is continuous
and

<HeSSFDrMMD|u T7 T>L2(,u) (1 + )‘) f ( )H T( )szﬂ — R()\’lu’ T)a

where limy_,0 R(A\, p, T) = 0.

e DrMMD is

® Unfortunately, 5 d”

— 1 € H is too strong in practice.
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Poincaré inequality

® Exponential convergence to the global minima (not necessarily unique) still hold
under a Polyak-tojasiewicz inequality, a strict relaxation of strong convexity.
® F,2 = x*(:||r) satisfies a (modified) PL inequality with « if, for all u € Pa(RY),

v ()

e |t is implied by 7 satisfying the Poincaré inequality (f = 3—7*: —1).

(:U’”ﬂ- HVWQ‘F 2( Hiz(ﬂ,) = i

Definition (Poincaré inequality)

We say that 7 satisfies a Poincaré inequality with constant Cp if for all f, Vf € L?(n),
Var,[f] < CpE, [||Vf||2] .

Furthermore, 7 satisfies a Poincaré with constant « if 7 is a-log concave.

® Poincaré inequality is a strict relaxation of strong log concavity. It is satisfied by
mlxture of Gaussians. It is invariant under Lipschitz perturbations [Bakry et al.,
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Poincaré inequality

Proposition 5 (Exponential convergence of F,» gradient flow

Suppose that T satisfies a Poincaré inequality with constant Cp. Let (fit)¢>0 be the
Wasserstein gradient flow of Fy2. Then, forany T > 0,

KL (i) < exp (~ 2L ) KL (uollm) .

For any t > 0,
. d/,bt d/J,t o d/.Lt 2
O:KL (pe||m) = —2E,,, <V|og i ,de > = —2E, ‘V i
= 2 , 2
< —— < ——KL .
< o (llm) < ~ KL (el

® (x) holds by the Poincaré inequality.
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DrMMD: An interpolation of MMD and y?

Question: Does DrMMD inherit the advantages of MMD? and x? ?
Does Fprvvp admit finite sample implementation of its Wasserstein gradient flow?
“ s Fiyanany (geodesic) convex when 7 is log-concave?
Does Fprmmp satisfy a (modified) PL condition when 7 satisfies a Poincaré
inequality?

Let (ie)e>0 be the Wasserstein gradient flow of Fp,vvp with a continuity equation

_ d
Ope + V- (ue(L+A)Vhyz) =0, hyw = (Tr + ) T (dljrt - 1) .
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PL condition of Fp:vnp

d
—KL
dt (e lm)
d
~ [ Fha)T 7 l0g () i
—— [ Fhua )TV L )
71'

-/ <w,w<x>—v‘;‘::<x>) /H
-/ (thm(X)—V<Cg:(X)—l>>T die /H e

Apply integration by parts for the first term.
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PL condition of FpaivD

%KL (pellm)

bt~ (£003)) (v [ o

< [r = (8 = 1), |~

The first term is bounded by Cauchy-Schwartz inequality, and the second term is
bounded by the Poincaré inequality with Cp.
Suppose d“f — 1€ Ran(T}) with r > 0.

Hh‘“”r B (% B > 12(r)

e = (Te + AD) 72T (% — 1)
Similar results have been established in kernel ridge regression [Cucker and Zhou,
2007].

— &KL (pell),

L2(7)

L2(m)

<\ ||thL2(7r), where h,, » = T/q:.
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PL condition of Fp:vnp

Proposition 6 (PL condition of Fp,nmp)

Let (11t)e>0 be the Wasserstein gradient flow of Fpyvimp. Suppose the kernel satisfied
Assumption 1. Suppose the target distribution  satisfies a Poincaré inequality with
constant Cp. Suppose , i.e., there exists q; € L?(7) such
that % — 1= T7q:. Suppose |[V(logm) V(%) iagry < Te andl | A(%E) | 2(r) < Te.
Then We have

d 1
—KL (pe]|7) < ——=—KL (pe]|7) + A (Tt + Ls).
dt CP

® When )\ = 0, we recover the PL condition of x? divergence.

® 7: and Z; are additional regularity conditions.

® Compared with the initial regularity condition d—’j: — 1 € H required for the (geodesic)
convexity of FprvMD,
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Interpolation space Ran(T))

L€ Ran (T‘r«f )

Figure: Visualization of Ran(Ty).

1
® Ran(TQ) = [2(r) and Ran(T?) = H.
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Convergence of DrMMD gradient flow

Theorem 1 (Convergence of DrMMD gradient flow)

In addition to the assumptions of the proposition of PL condition on Fpyvmp. If
Hqt||L2(7r) <QRQ N < T, I <TIforall0 <t < T, where Q,J, and T are positive
constants independent of \, then for any T > 0,

(I+X)

2
KL (i) < exp (— - T) KL (siol[m) + N CrQ(T +T).

When A = 0, it recovers the exponential convergence of x? flow.

2
KL (ur]|7) < exp (—CPT) KL (s ) .

Larger r means more regularity of the trajectory and thus smaller bias.

Smaller Poincaré (Cp = 1/a)) means faster convergence.

For continuous time DrMMD flow, we would want A — 0 for ‘convexity’, however,
that is not the case for discrete time flow.
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DrMMD gradient descent

e DrMMD gradient flow (continuity equation)
Otpe + V- (ue(1+ A)Vhy, =) =0
e DrMMD gradient descent: for step size v > 0,

o+t = (Id + (1 4+ A)Vhy, x)shn.
® Recall the Wasserstein Hessian of FprvimvD

2VKKsg 4+ Kig
A

[(Hess Foano T T) gy <2001+ 2) I TIZ2. VT € TuP2(RY).

(1)

® Taking A\ — 0 breaks the smoothness of Fp,vmmD-

28 /32



Convergence of DrMMD gradient descent

Proposition 7 (Descent lemma of DrMMD gradient descent)

Let (11n)nen be the Wasserstein gradient descent of Fpmp. Suppose m o< exp(— V)
with HV < B1. Suppose all assumptions in the proposition of the PL condition on
FormmD hold. Suppose the step size «y is small enough.

KL (pny1]m) — KL (pallm) < —&52 (allm) v+ A QT +I) +728x3 (unllw) HeHee

Approximation error Discretization error

v

® A trade-off between the approximation error and the time-discretization error.
® Optimal choice of An at each iterate n:

1
Kig+K: +1 1
Ao = (29 (puallm) 20 ) T o 32 (paall )
® At the start, we want a larger A\ to have more smoothness; when closer to the

convergence, we want a smaller \ to operate in the x? regime to better catch the

difference of the distributions.
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Convergence of DrMMD gradient descent

Theorem 2 (Convergence of DrMMD gradient descent)

Let (pn)nen be the Wasserstein gradient descent of Fpvivp. Suppose all conditions
from the descent lemma hold. Then, for any npax € N,

2n
KL (g 7) < 9 (2220 ) KL (uol)

r 2r r
+ 7T CpQT ((Kug + Kag) B)7 (T + )7

® To reach error KL (up,..|l7) < 4, it takes O((%)# log }) iterations.
e By comparison, for Langevin Monte Carlo, it takes O(% log %) [Chewi et al., 2024].

® DrMMD gradient descent takes more iterations due to the additional approximation
error (’)()\r) but it operates without the knowledge of potential V' and only requires
= [ k(x x,-) dm and the embedding [ k(x,-) dr.

30/32



Particle DrMMD gradient descent

® To operate in the setting of generative models, we only have access to samples.

e We are given N samples from the initial distribution {X,-(O)},’-V:1 ~ po and M samples
from the target distribution {y,-},'-\il ~ T

The DrMMD particle descent from time n to time n+ 1, is defined as

X(n+1) _ X,'(n) _ 7(]_ + )\n) Vhﬁnﬁ(x,-("))’ i=1

1

N.

g ooy

® hp,» admits a closed-form expression with Gram matrices.

® )\, is taken to be proportionate to DrMMD(/}nHﬁ)r%l.
® ris selected from a set {0.1,0.2,...,1.0}.
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Conclusions

® We propose DrMMD gradient flow as an interpolation of MMD gradient flow and y?
gradient flow.

DrMMD gradient flow / descent has global convergence results, compared to MMD
flow, under an adaptive regularization parameter A.

This justifies the application of adaptive kernels in recent MMD flow (MMD GAN)
papers that achieve SOTA empirical performances.
More in the paper https://arxiv.org/pdf/2409.14980.

® Empirical results on synthetic datasets.

® An example of DrMMD flow with a Gaussian target distribution 7 which satisfies all
conditions in the theorems.

® Finite-particle convergence results with propagation of chaos bound.

32/32


https://arxiv.org/pdf/2409.14980

F. Altekriiger, J. Hertrich, and G. Steidl. Neural wasserstein gradient flows for maximum
mean discrepancies with riesz kernels. arXiv preprint arXiv:2301.11624, 2023.

M. Arbel, A. Korba, A. Salim, and A. Gretton. Maximum mean discrepancy gradient
flow. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d"Alché Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

D. Bakry, I. Gentil, M. Ledoux, et al. Analysis and geometry of Markov diffusion
operators, volume 103. Springer, 2014.

A. Belhadji, D. Sharp, and Y. Marzouk. Weighted quantization using mmd: From mean
field to mean shift via gradient flows. arXiv preprint arXiv:2502.10600, 2025.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

S. Chewi, T. Le Gouic, C. Lu, T. Maunu, and P. Rigollet. SVGD as a kernelized

Wasserstein gradient flow of the chi-squared divergence. In H. Larochelle, M. Ranzato,

R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 2098-2109. Curran Associates, Inc., 2020.

32/32



S. Chewi, M. A. Erdogdu, M. Li, R. Shen, and M. S. Zhang. Analysis of Langevin Monte
Carlo from Poincare to log-Sobolev. Foundations of Computational Mathematics,
pages 1-51, 2024.

F. Cucker and D. X. Zhou. Learning Theory: An Approximation Theory Viewpoint,
volume 24. Cambridge University Press, 2007.

A. Galashov, V. D. Bortoli, and A. Gretton. Deep MMD gradient flow without adversarial
training. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=Pf£85K2wtz8.

0. Hagrass, B. K. Sriperumbudur, and B. Li. Spectral regularized kernel two-sample tests.
The Annals of Statistics, 52(3):1076-1101, 2024.

Z. Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel Fisher
discriminant analysis. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2007.

J. Hertrich, C. Wald, F. Altekriiger, and P. Hagemann. Generative sliced MMD flows with
riesz kernels. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VdkGRVivcft.

R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the
Fokker—Planck equation. SIAM Journal on Mathematical Analysis, 29(1):1-17, 1998.

32/32


https://openreview.net/forum?id=Pf85K2wtz8
https://openreview.net/forum?id=VdkGRV1vcf

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Miiller. Fisher discriminant
analysis with kernels. In Neural Networks for Signal Processing IX: Proceedings of the

1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), pages 41-48,
1999.

S.-i. Ohta and A. Takatsu. Displacement convexity of generalized relative entropies.
Advances in Mathematics, 228(3):1742-1787, 2011.

F. Otto. The geometry of dissipative evolution equations: the porous medium equation.
2001.

S. Sarkka and A. Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

S. Vempala and A. Wibisono. Rapid convergence of the unadjusted Langevin algorithm:
Isoperimetry suffices. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

C. Villani et al. Optimal Transport: Old and New, volume 338. Springer, 2009.

32/32



	Personal
	Background
	Examples of WGF
	DrMMD
	Convergence
	Conclusions
	References

