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Background: Quadrature

® |n mathematics, statistics, machine learning, etc., people run into intractable
expectations / integrals.

| = Ex[h(X)] = /X h(x)m(x)dx, h:X CRY = R.

® 7 is some probability measure.
® How to approximate / given samples xi, ..., xy and function evaluations
h(Xl)a ) h(XN)?
® Quadrature:
N
i: Z W,'h(X,'), /A% /
n=1
® Monte Carlo!
® W =...=wy= % are uniform weights.
® Suppose h € Ly(m). When xy, ..., xy are iid samples from 7, we have

e — 1| = Op(NY/2).
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Background: Quadrature

Monte Carlo is relatively slow.

® In some applications, getting one sample / function evaluation would take hours.
® Weather forecasts.

Does there exist a faster way of quadrature than Monte Carlo? Yes! )

* By choosing smart weights w;, |/ — I| — 0 faster than Monte Carlo as N — oc.

N
= Z w;h(x;).
n=1

Provided that h has some nice properties - smoothness!

® How to describe smoothness? RKHS!
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Background: reproducing kernel Hilbert space

Suppose k : X x X — R is a symmetric positive definite function.

® There exists a unique reproducing kernel Hilbert space (RKHS) H associated with k
such that 1) k(x,-) € H. 2) the reproducing property (f, k(x,-))y = f(x).
‘Intuitively’, RKHS is a space of continuous functions of certain smoothness.
Matern-v kernels (v =1/2, v = 3/2)

exp(—C Hlx — X[[), (14 V30 ||x —X||)exp(—v3¢7H || x — X]]).
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Background: reproducing kernel Hilbert space

Matérn v=% (Less Smooth) Matérn v =% (Smoother)

Function Value

=2

e Matern-v RKHS is ‘norm equivalent’ to the Sobolev space W2 %/2(x).
W5(X) :={h e Lr(X): D h e Ly(X) for all B € N? with [3| <s}, seN*t

e f € W5(X) indicates that it has derivatives up to order s.
¢ We call them Sobolev reproducing kernels of order s if their RKHS ‘is’ W5 (X).
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Background: Quadrature

® The task is to approximate an intractable integral | = Ex..[h(X)] = [ h(x)m(x)dx
® Suppose h € W5 (X'), a Sobolev space and also a RKHS H with reproducing kernel k.
e Denote [ = ZnN:1 wih(x;).

’/—-f‘zzPExAmthX)]-zgjthKXh)

= (h Exurlk(X ]—an ().,

< [l | Exer k(X I—Z% G,

e Optimal weights minimize R(wy.n) = ||Ex~x[k(X, )] — Zyzl Wnk (Xn, ) |17
win = Excor [K(X, x1:0)] (K (v, xeon) + NAT) ™

® Here wy.y = [wy,. .., WN]T € RN. X\ > 0 helps improve numerical stability. 625



Background: Quadrature

e Kernel quadrature estimator IAKQ takes weighted average with optimal weights.

N
Ikq = Z wih(x;) = Exer [k(X, x0:0)] (K (x0:0, x1:8) + NAIy) ™ A(xan).-
i—1

e |ikg — I| = Op(N~4) provided that h € Ws(X) and X C R,
® In contrast, standard Monte Carlo |lyc — I| = Op(N~1/2).
® KQ is faster than MC when s > %.
* KQ rate is minimax optimal: |ixg — I| = ©@p(N~5/9).
® KQ suffers from curse of dimensionality.
® KQ requires the tractable form of Ex...[k(X,x1:n)]. ‘change of variable’
e Intuition: KQ achieves faster rate because 1) It utilizes smoothness of h. 2) There is
no observation noise in quadrature settings.
[ ]

KQ can be extended to Bayesian quadrature.
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Nested Expectation

Let X C R9* and © C R%.

I =Eopq[f (Ex~p, [6(X,;0)])], g:XxO =R, f:R—=R

® Py is any probability measure on X’ parameterized by 6. A simple case is the
conditional distribution P(- | 6).

® | consists of two expectations. The inner expectation J(#) = Ex.p, [g(X,0)], and
the outer expectation | = Eg[f(J(0))].

When f is linear f(t) = ct for c € R, | reduces to cEx g [g(X, 8)].
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Nested Expectation: Why do we care?

Bayesian experimental design.

[ oty 1 ytee ( R d)de) dy.

® Acquisition function in Bayesian optimization.

o(z; D) := E¢,, [g(fp,z) + ngfo‘D, I3 (f'D’vzl)]:| .

Statistical divergences.

® Financial risk management .
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Nested expectation

e Samples and function evaluations to estimate | = Egq [f (Ex~p, [g(X,8)])].
O1.7 = [01, ..

® Total

,9T]—r S @T

xl(t,)v = [x:{ ),.. (t)] € XN

(47,60),...g (<)), 0) | € RY,

g({n0:) = [g

~ N x T number of samples / function evaluations.

[ ] [ ]
o o

6,
° °
° [ ]
() [ ]

Or
° [ ]
o [ ]
[ ) L]

10/25



Nested Expectation

The cost of getting samples / function evaluations is the dominating cost.
® The computational complexity of a method is small by comparison.

Efficiency: To reach A error, |[ — I < A, how many samples / function evaluations

we need?

NMC | O(A=*) [NQMC | O(A~29)

_dx _do
MLMC | O(A~2) | NKQ O(A B se)

Smaller exponents r in A™" indicate a cheaper method.

NKQ is the most efficient when the smoothness parameters sy, sg are large.

11/25



Nested Monte Carlo

I = Eoq[f (Ex~p, [8(X,0)])].
Nested Monte Carlo

T N
/NMC—TZ; ( > g Xnt)76t>

n=1

It is proved that
E[|/ - iwmc|] = O (N_% + T_%>

Expectation is taken over the randomness of samples.

To reach error smaller than A, we need N = O(A~2) and T = O(A~2) so the total
costis N x T = O(A™*).

For example, to reach error smaller than 0.01, we need 108 number of samples /

function evaluations.
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Nested Quasi Monte Carlo

® Given a uniform distribution m = U[0, 1], Quasi Monte Carlo samples can cover the
domain more uniformly than i.i.d samples.

Uniform sequence Halton sequence Scrambled Sobol sequence

e |t is proved that the efficiency of NQMC is A=2% i.e to reach error smaller than A,
NQMC needs O(A~25) number of samples / function evaluations.

e QMC samples only work for domains like [0, l]d or simple transformations thereof.
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Nested Kernel Quadrature

Does there exist a faster way than Nested (Quasi) Monte Carlo? Yes! J

® NMC used uniform weights W,ft = 4 and w® =1,

e Kernel quadrature weights.
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Nested Kernel Quadrature

e Stage |: For each t € {1,..., T}, we estimate the inner conditional expectation J

evaluated at 8; with N observations x{t,)\, and g(xf:t,)vﬁt) using a KQ estimator:

g(x.0:).

® The inner expectation J(0) = Ex.p, [g(X,0)] is a standard expectation.
® ky: X xX — Risakernel on X. K()? is the N x N Gram matrix.

o (’)(Nf%i) rate of convergence for each J(0;) with t =1,..., T.

Jka(0e) = Exuy, [k (X, X\ (KD + MAxIy) ™

e Stage Il: We use KQ again by treating Fxo(0;) = f(Jko(6:)) as the observation for
the outer expectation | = Egq[f(J(0))].

Inkg = Eo~glke(8, 01.7)(Ko + Thel 7) *Fro(b1.7).

® ko:©O© x© — Ris akernel on ©. Kg is the T x T Gram matrix.
® The same rate of convergence O( T_%) holds even with Fxq(f;) rather than F(6,).
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Nested Kernel Quadrature

* g<(L'EIT)7 eT)

Or * wyy
—F(6,) @ Falt) @ uf
* 9o, 0)
02 [ ] wT"EQ
* g(z\V 9 /
g(xn’, 01) . _c o 000 o -
91 '/ ‘ ° wf{] 01 62 BT
x xV
Stage I Stage 11
Figure: lllustration of NKQ. In stage |, we estimate J(0:) using qu(Qt) =N L Wi, g\, 6;) for all
t€{1,..., T}. In stage Il, we estimate | with lnke = 3., w®Fro(0:) where Fro(8:) = f(Jka(8:)). The

shaded areas depict Py (for stage 1) and Q (for stage I). 16/25



Nested Kernel Quadrature: Theory

Let X = [0,1]% and © = [0,1]%. Suppose that kx and ke are Sobolev kernels of
smoothness sy > dx /2 and sg > dg /2, and that the following conditions hold,

(1) For any 6 € © and any 3 € N% with |3| < se, ng(-,e) € W3~ (X).
(2) Forany x € X, g(x,-) € W,°(©) and 0 — py(x) € W;°(O).
(3) f € CotL(R).

sy+1

T _sx X _Se s+l
)/—/NKQ) <T<C1N x (log N) @ + G T “(log T) % >

holds with probability at least 1 — 4e".

e Convergence in high probability!
® The stage Il observations {Fxq(f:)}/_; can be treated as noiseless. The additional

NSk
error it introduces is the same order as the stage | error O(N 9x ) and is therefore
subsumed by it. 1725



Nested Kernel Quadrature

~ ~ _Sx _Se ~ _9x _ %%
‘/—/NKQ‘ — Op (/v T de), Efficiency = O(A v )

~_dx N9
® To reach error smaller than A, we need N = O(A sx)and T = O(A <o) so the
dy _do

total cost is N x T =O(A 5x %e).

® NKQ can be extended to its Bayesian counterpart to obtain finite-sample
uncertainty.

® Question: How to propagate Stage | uncertainty to Stage |17
® Answer: Linearization of f.

18/25



Synthetic Experiment

Q = UJ[0,1], Py = U[0, 1], g(x,0) = x3 + 63, and f(z) = 22
In this case | = 0.4115 can be computed analytically.

sy =50 =2,dy =do =1.

The grey line represents the theory.

—— NMC (N =T) —*— NMC (N =+T)
—— NKQ (N=T) —— NKQ (N =T)
Synthetic Experiment
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19/25



Other Experiments

—— NMC  —#— NMC (QMC) —@— MLMC
—— NKQ  —%— NKQ (QMC)
Risk Management in Finance Health Economics
100

~ ~ 10*
|
é 107! ~
Il Il
< 10 <

10!

10% 10* 107 10° 10° 10% 10* 10* 10° 10°
Cost Cost

® Detailed settings can be found in the paper.

* NKQ (QMC) represents nested kernel quadrature with Quasi-Monte Carlo samples.
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Bayesian Optimization

Dropwave Ackley Cosines
10° 107 10°
— NKQ E
\ 1
NMC £ 10 10-1
—— MLMC 10!
0 2 4 6 s 0 2 4 6 s 10 0 10 20 30 40 50 60
Seconds Seconds Seconds

® Bayesian Optimization with look-ahead acquisition functions.
a(z; D) := Ef,, [g(fp,z) + mzzafo‘D, g (o, 2)] |,

® fip, fipr are the GP posteriors.
® The reward g is the g-expected improvement with g = 2.
g(fp,z) :J.rﬂéllé(fm(zj) — fmax);0),  z=(z1,2).
® The integral is computed with respect to a 2 dimensional Gaussian distribution,
hence NKQ works pretty well!
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Conclusions

® To approximate nested expectation

I =Egq[f (Ex~p, [g(X,0)])]

® We propose a new method nested kernel quadrature (NKQ).

® \We prove a faster rate of convergence than baselines when the problem has sufficient
amount of smoothness.

The theory is confirmed in several experiments.
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Multi-level Monte Carlo

® Decompose the challenging problem of estimating / into the sum of easier problems
of multiple fidelity level ¢ € {0,...,L}.
® At each level ¢, we are given T, samples 6.7, sampled i.i.d from Q and we have N,

samples xl(?,ﬁl)z sampled i.i.d from Py, for each t =1,..., Tj.
L 1 T, 1 To
Iaime =Y T, D (FUee) = FJe-1) + T > (o)
=1 ‘=1 t=1

Ny
1
where Jy ;1= I Zg(x,(,t),et) for ¢ € {0,..., L},
n=1
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Multi-level Monte Carlo

® The total cost and expected absolute error
L L
Cost—(’)(ZNgx Tg), Ey/—/MLMCy—O(ZN,;l x T, )
£=0 £=0
e In order to reach error threshold A, one can take N; x 2¢ and T; ox 272%A—2,

Therefore, one has

N|=

E|l — Imimc] = O(A),  Efficiency = O(A™2).

e NKQ can be combined with multi-level construction as well (MLKQ).

dy _ do

E|l — lyiko| = O(A), Efficiency = O(A™' Zx %0,

® The proved theoretical fast rate is not verfied in experiments.
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Future Work / Directions

e Extend NKQ to its Bayesian counterpart and use active learning to further improve
efficiency.

® More practical exploration of Multi-level kernel quadrature (MLKQ).
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