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Background: Quadrature

• In mathematics, statistics, machine learning, etc., people run into intractable
expectations / integrals.

I = EX∼π[h(X )] =

∫
X
h(x)π(x)dx , h : X ⊆ Rd → R.

• π is some probability measure.
• How to approximate I given samples x1, . . . , xN and function evaluations

h(x1), . . . , h(xN)?
• Quadrature:

Î =
N∑

n=1

wih(xi ), Î ≈ I

• Monte Carlo!
• w1 = . . . = wN = 1

N are uniform weights.
• Suppose h ∈ L2(π). When x1, . . . , xN are iid samples from π, we have

|ÎMC − I | = OP(N
−1/2).
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Background: Quadrature

• Monte Carlo is relatively slow.
• In some applications, getting one sample / function evaluation would take hours.

• Weather forecasts.

Does there exist a faster way of quadrature than Monte Carlo? Yes!

• By choosing smart weights wi , |Î − I | → 0 faster than Monte Carlo as N → ∞.

Î =
N∑

n=1

wih(xi ).

• Provided that h has some nice properties - smoothness!

• How to describe smoothness? RKHS!
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Background: reproducing kernel Hilbert space

• Suppose k : X × X → R is a symmetric positive definite function.

• There exists a unique reproducing kernel Hilbert space (RKHS) H associated with k
such that 1) k(x , ·) ∈ H. 2) the reproducing property ⟨f , k(x , ·)⟩H = f (x).

• ‘Intuitively’, RKHS is a space of continuous functions of certain smoothness.

• Matern-ν kernels (ν = 1/2, ν = 3/2)

exp(−ℓ−1∥x − x ′∥), (1 +
√
3ℓ−1

∥∥x − x ′
∥∥) exp(−√

3ℓ−1
∥∥x − x ′

∥∥).
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Background: reproducing kernel Hilbert space

• Matern-ν RKHS is ‘norm equivalent’ to the Sobolev space W
ν+d/2
2 (X ).

W s
2 (X ) :=

{
h ∈ L2(X ) : Dβh ∈ L2(X ) for all β ∈ Nd with |β| ≤ s

}
, s ∈ N+

• f ∈ W s
2 (X ) indicates that it has derivatives up to order s.

• We call them Sobolev reproducing kernels of order s if their RKHS ‘is’ W s
2 (X ).
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Background: Quadrature

• The task is to approximate an intractable integral I = EX∼π[h(X )] =
∫
X h(x)π(x)dx .

• Suppose h ∈ W s
2 (X ), a Sobolev space and also a RKHS H with reproducing kernel k .

• Denote Î =
∑N

n=1 wih(xi ).∣∣∣I − Î
∣∣∣ = ∣∣∣EX∼π[h(X )]−

N∑
n=1

wnh(xn)
∣∣∣

=
〈
h,EX∼π[k(X , ·)]−

N∑
n=1

wnk (xn, ·)
〉
H

≤ ∥h∥H
∥∥∥EX∼π[k(X , ·)]−

N∑
n=1

wnk (xn, ·)
∥∥∥
H
.

• Optimal weights minimize R(w1:N) = ∥EX∼π[k(X , ·)]−∑N
n=1 wnk (xn, ·) ∥H.

w1:N = EX∼π[k(X , x1:N)] (K (x1:N , x1:N) + NλIN)−1 .

• Here w1:N = [w1, . . . ,wN ]
⊤ ∈ RN . λ ≥ 0 helps improve numerical stability.
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Background: Quadrature

• Kernel quadrature estimator ÎKQ takes weighted average with optimal weights.

ÎKQ =
N∑
i=1

wih(xi ) = EX∼π[k(X , x1:N)] (K (x1:N , x1:N) + NλIN)−1 h(x1:N).

• |ÎKQ − I | = OP(N
− s

d ) provided that h ∈ W s
2 (X ) and X ⊂ Rd .

• In contrast, standard Monte Carlo |ÎMC − I | = OP(N
−1/2).

• KQ is faster than MC when s > d
2 .

• KQ rate is minimax optimal: |ÎKQ − I | = ΘP(N
−s/d).

• KQ suffers from curse of dimensionality.
• KQ requires the tractable form of EX∼π[k(X , x1:N)]. ‘change of variable’

• Intuition: KQ achieves faster rate because 1) It utilizes smoothness of h. 2) There is
no observation noise in quadrature settings.

• KQ can be extended to Bayesian quadrature.
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Nested Expectation

• Let X ⊆ RdX and Θ ⊆ RdΘ .

I = Eθ∼Q [f (EX∼Pθ
[g(X , θ)])] , g : X ×Θ → R, f : R → R

• Pθ is any probability measure on X parameterized by θ. A simple case is the
conditional distribution P(· | θ).

• I consists of two expectations. The inner expectation J(θ) = EX∼Pθ
[g(X , θ)], and

the outer expectation I = Eθ∼Q[f (J(θ))].

• When f is linear f (t) = ct for c ∈ R, I reduces to cEX ,θ [g(X , θ)].
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Nested Expectation: Why do we care?

• Bayesian experimental design.∫
Y
p(y | d) log

(∫
Θ
p(y | θ, d)dθ

)
dy .

• Acquisition function in Bayesian optimization.

α(z ;D) := Ef|D

[
g(f|D, z) + max

z ′
Ef|D′

[
g
(
f|D′ , z ′

)]]
.

• Statistical divergences.

• Financial risk management .

• ...
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Nested expectation

• Samples and function evaluations to estimate I = Eθ∼Q [f (EX∼Pθ
[g(X , θ)])].

θ1:T := [θ1, . . . , θT ]
⊤ ∈ ΘT ,

x
(t)
1:N :=

[
x
(t)
1 , . . . , x

(t)
N

]
∈ XN ,

g
(
x
(t)
1:N , θt

)
:=
[
g
(
x
(t)
1 , θt

)
, . . . , g

(
x
(t)
N , θt

)]
∈ RN ,

• Total ≈ N × T number of samples / function evaluations.

𝑥1
1

𝑥𝑁
1

𝑔(𝑥1
1, 𝜃1)

𝑔(𝑥𝑁
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𝑥𝑁
2
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Nested Expectation

• The cost of getting samples / function evaluations is the dominating cost.
• The computational complexity of a method is small by comparison.

• Efficiency: To reach ∆ error, |Î − I | ≤ ∆, how many samples / function evaluations
we need?

NMC O(∆−4) NQMC O(∆−2.5)

MLMC O(∆−2) NKQ O
(
∆

− dX
sX

− dΘ
sΘ

)
• Smaller exponents r in ∆−r indicate a cheaper method.

• NKQ is the most efficient when the smoothness parameters sX , sΘ are large.

11 / 25



Nested Monte Carlo

• I = Eθ∼Q [f (EX∼Pθ
[g(X , θ)])].

• Nested Monte Carlo

ÎNMC :=
1

T

T∑
t=1

f

(
1

N

N∑
n=1

g(x
(t)
n , θt)

)
• It is proved that

E[|I − ÎNMC|] = O
(
N− 1

2 + T− 1
2

)
• Expectation is taken over the randomness of samples.

• To reach error smaller than ∆, we need N = O(∆−2) and T = O(∆−2) so the total
cost is N × T = O(∆−4).

• For example, to reach error smaller than 0.01, we need 108 number of samples /
function evaluations.
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Nested Quasi Monte Carlo

• Given a uniform distribution π = U[0, 1]d , Quasi Monte Carlo samples can cover the
domain more uniformly than i.i.d samples.

• It is proved that the efficiency of NQMC is ∆−2.5, i.e to reach error smaller than ∆,
NQMC needs O(∆−2.5) number of samples / function evaluations.

• QMC samples only work for domains like [0, 1]d or simple transformations thereof.
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Nested Kernel Quadrature

Does there exist a faster way than Nested (Quasi) Monte Carlo? Yes!

ÎNMC :=
1

T

T∑
t=1

f

(
1

N

N∑
n=1

g(x
(t)
n , θt)

)
, ÎNKQ :=

T∑
t=1

wΘ
t f

(
N∑

n=1

wX
n,tg(x

(t)
n , θt)

)

• NMC used uniform weights wX
n,t =

1
N and wΘ

t = 1
T .

• Kernel quadrature weights.
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Nested Kernel Quadrature

• Stage I: For each t ∈ {1, . . . ,T}, we estimate the inner conditional expectation J

evaluated at θt with N observations x
(t)
1:N and g(x

(t)
1:N , θt) using a KQ estimator:

ĴKQ(θt) := EX∼Pθt
[kX (X , x

(t)
1:N)]

(
K (t)

X + NλX IN
)−1

g
(
x
(t)
1:N , θt

)
.

• The inner expectation J(θ) = EX∼Pθ
[g(X , θ)] is a standard expectation.

• kX : X × X → R is a kernel on X . K (t)
X is the N × N Gram matrix.

• O(N
− sX

dX ) rate of convergence for each J(θt) with t = 1, . . . ,T .

• Stage II: We use KQ again by treating F̂KQ(θt) = f (ĴKQ(θt)) as the observation for
the outer expectation I = Eθ∼Q[f (J(θ))].

ÎNKQ := Eθ∼Q[kΘ(θ, θ1:T )](KΘ + TλΘIT )−1F̂KQ(θ1:T ).

• kΘ : Θ×Θ → R is a kernel on Θ. KΘ is the T × T Gram matrix.
• The same rate of convergence O(T

− sΘ
dΘ ) holds even with F̂KQ(θt) rather than F (θt).
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Nested Kernel Quadrature

Stage I Stage II

𝜽𝟐

𝜽𝟏

𝜽𝑻

…
F (µt) F̂KQ(µt) w£

t

𝜽𝟏 𝜽𝟐 … 𝜽𝑻
g(x

(1)
n , µ1)

wX
n,1

𝒙𝟏
(𝟏) 𝒙𝑵

(𝟏)…

g(x
(2)
n , µ2)

wX
n,2

𝒙𝟏
(𝟐) 𝒙𝑵

(𝟐)…

g(x
(T )
n , µT)

wX
n,T

𝒙𝟏
(𝑻) 𝒙𝑵

(𝑻)…

Figure: Illustration of NKQ. In stage I, we estimate J(θt) using ĴKQ(θt) =
∑N

n=1 w
X
n,tg(x

(t)
n , θt) for all

t ∈ {1, . . . ,T}. In stage II, we estimate I with ÎNKQ =
∑T

t=1 w
Θ
t F̂KQ(θt) where F̂KQ(θt) = f (ĴKQ(θt)). The

shaded areas depict Pθ (for stage I) and Q (for stage II).
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Nested Kernel Quadrature: Theory

Theorem

Let X = [0, 1]dX and Θ = [0, 1]dΘ . Suppose that kX and kΘ are Sobolev kernels of
smoothness sX > dX /2 and sΘ > dΘ/2, and that the following conditions hold,

(1) For any θ ∈ Θ and any β ∈ NdΘ with |β| ≤ sΘ, D
β
θ g(·, θ) ∈ W sX

2 (X ).

(2) For any x ∈ X , g(x , ·) ∈ W sΘ
2 (Θ) and θ 7→ pθ(x) ∈ W sΘ

2 (Θ).

(3) f ∈ C sΘ+1(R).∣∣∣I − ÎNKQ

∣∣∣ ≤ τ

(
C1N

− sX
dX (logN)

sX+1

dX + C2T
− sΘ

dΘ (logT )
sΘ+1

dΘ

)
,

holds with probability at least 1− 4e−τ .

• Convergence in high probability!
• The stage II observations {F̂KQ(θt)}Tt=1 can be treated as noiseless. The additional

error it introduces is the same order as the stage I error Õ(N
− sX

dX ) and is therefore
subsumed by it. 17 / 25



Nested Kernel Quadrature

∣∣∣I − ÎNKQ

∣∣∣ = ÕP

(
N

− sX
dX + T

− sΘ
dΘ

)
, Efficiency = Õ(∆

− dX
sX

− dΘ
sΘ )

• To reach error smaller than ∆, we need N = Õ(∆
− dX

sX ) and T = Õ(∆
− dΘ

sΘ ) so the

total cost is N × T = Õ(∆
− dX

sX
− dΘ

sΘ ).
• NKQ can be extended to its Bayesian counterpart to obtain finite-sample
uncertainty.

• Question: How to propagate Stage I uncertainty to Stage II?
• Answer: Linearization of f .
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Synthetic Experiment

• Q = U[0, 1], Pθ = U[0, 1], g(x , θ) = x
5
2 + θ

5
2 , and f (z) = z2

• In this case I = 0.4115 can be computed analytically.
• sX = sΘ = 2, dX = dΘ = 1.
• The grey line represents the theory.

102 103 104 105 106

Cost= N × T

10−5

10−3

10−1

∆
=
|I
−
Î
|

Synthetic Experiment

NMC (N = T )

NKQ (N = T )

NMC (N =
√
T )

NKQ (N =
√
T )
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Other Experiments

NMC

NKQ

NMC (QMC)

NKQ (QMC)

MLMC

102 103 104 105 106

Cost

10−2

10−1

100

∆
=
|I
−
Î
|

Risk Management in Finance

102 103 104 105 106

Cost

101

102

∆
=
|I
−
Î
|

Health Economics

• Detailed settings can be found in the paper.

• NKQ (QMC) represents nested kernel quadrature with Quasi-Monte Carlo samples.
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Bayesian Optimization
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• Bayesian Optimization with look-ahead acquisition functions.

α(z ;D) := Ef|D

[
g(f|D, z) + max

z ′
Ef|D′

[
g
(
f|D′ , z ′

)]]
,

• f|D, f|D′ are the GP posteriors.
• The reward g is the q-expected improvement with q = 2.

g(f|D, z) = max
j=1,2

(f|D(zj)− rmax), 0), z = (z1, z2).

• The integral is computed with respect to a 2 dimensional Gaussian distribution,
hence NKQ works pretty well!
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Conclusions

• To approximate nested expectation

I = Eθ∼Q [f (EX∼Pθ
[g(X , θ)])]

• We propose a new method nested kernel quadrature (NKQ).

• We prove a faster rate of convergence than baselines when the problem has sufficient
amount of smoothness.

• The theory is confirmed in several experiments.
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Multi-level Monte Carlo

• Decompose the challenging problem of estimating I into the sum of easier problems
of multiple fidelity level ℓ ∈ {0, . . . , L}.

• At each level ℓ, we are given Tℓ samples θ1:Tℓ
sampled i.i.d from Q and we have Nℓ

samples x
(θt)
1:Nℓ

sampled i.i.d from Pθt for each t = 1, . . . ,Tℓ.

ÎMLMC :=
L∑

l=1

1

Tℓ

Tℓ∑
t=1

(f (Jℓ,t)− f (Jℓ−1,t)) +
1

T0

T0∑
t=1

f (J0,t)

where Jℓ,t :=
1

Nℓ

Nℓ∑
n=1

g(x
(t)
n , θt) for ℓ ∈ {0, . . . , L},
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Multi-level Monte Carlo

• The total cost and expected absolute error

Cost = O
(

L∑
ℓ=0

Nℓ × Tℓ

)
, E|I − ÎMLMC | = O

(
L∑

ℓ=0

N−1
ℓ × T

− 1
2

ℓ

)
.

• In order to reach error threshold ∆, one can take Nℓ ∝ 2ℓ and Tℓ ∝ 2−2ℓ∆−2.
Therefore, one has

E|I − ÎMLMC | = O(∆), Efficiency = O(∆−2).

• NKQ can be combined with multi-level construction as well (MLKQ).

E|I − ÎMLKQ | = O(∆), Efficiency = O(∆
−1− dX

2sX
− dΘ

2sΘ ).

• The proved theoretical fast rate is not verfied in experiments.
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Future Work / Directions

• Extend NKQ to its Bayesian counterpart and use active learning to further improve
efficiency.

• More practical exploration of Multi-level kernel quadrature (MLKQ).

25 / 25


	Background
	Nested Expectation
	Conclusion
	Appendix

