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Background: Causal Inference

• The causal effect of smoking X on the risk of lung cancer Y .
• Unobserved confounding ϵ that affects both X and Y : gene, occupation, childhood.
• It takes long for scientific community to agree that smoking increases risk of lung
cancer.

How to do causal inference with unobserved confounders ϵ?
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Background: Instrumental Variable

• In this talk, we only consider additive confounding.

Y = f∗(X ) + ϵ, E[ϵ | X ] ̸= E[ϵ] = 0.

• f∗ is the target of interest.
• Dose response curve, causal parameter, potential outcome, structural function, etc.

• Regression only recovers the conditional mean E[Y | X ] ̸= f∗(X ) and always outputs
a biased estimate.

X Y

ϵ
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Background: Instrumental Variable

• Instrumental variables Z affect Y only through X and is independent of ϵ.
• A valid instrumental variable could be ‘price of cigarette’.

Y = f∗(X ) + ϵ, E[ϵ | X ] ̸= 0, E[ϵ | Z ] = E[ϵ] = 0.

• Conditioning on both sides

E[Y | Z ] = E[f∗(X ) | Z ].

• P is the joint data distribution over Z ,X ,Y . PZ ,PX ,PY denote the marginals.
• In fact an ill-posed inverse problem

Y = (Tf∗)(Z ) + υ, E[υ | Z ] = 0,

• where T is a conditional expectation operator.

T : L2(PX ) → L2(PZ ), (Tf )(z) = E[f (X ) | Z = z].

• Ill-posedness: T is compact so T−1 is unbounded.
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Background: Instrumental Variable

• In practice, one has access to observed covariates (confounders) O.
• For instance, one’s occupation.

Y = f∗(X ,O) + ϵ, E[ϵ | Z ,O] = 0.

• An ill-posed inverse problem

Y = (Tf∗)(Z ,O) + υ, E[υ | Z ,O] = 0,

• where T is a conditional expectation operator.

T : L2(PXO) → L2(PZO), (Tf )(z, o) = E[f (X ,O) | Z = z,O = o].

• We focus on nonparametric instrumental variable with observed covariates (NPIV-O).

XZ Y

ϵ O
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Setting: NPIV-O

• The observed covariates O brings two advantages
• Practitioners adjust for as many observed covariates as possible.

• Occupation, income, age, disease history, etc.
• Personalized causal effect estimation by conditioning on O = o.

• The effect of smoking on lung cancer for manual laborers.

• The observed covariates O brings two challenges for its theoretical analysis
• a) The anisotropic smoothness of f∗ : X ×O → R.
• b) The structural dichotomy of T between a compact operator and an identity operator.

GA =
{
g ∈ L2(PXO)

∣∣ ∃g ′ ∈ L2(PX ) such that ∀x ∈ X , o ∈ O, g(x, o) = g ′(x)
}
,

GB =
{
g ∈ L2(PXO)

∣∣ ∃g ′ ∈ L2(PO) such that ∀x ∈ X , o ∈ O, g(x, o) = g ′(o)
}
.

• T ∗T |GA
(T ∗T restricted to GA) is compact; T ∗T |GB

is an identity operator.
• Partial smoothing effect of T .

• Existing work on NPIV relies on the compactness of T .
• Stratification on O is a simple yet statistically inefficient fix.
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Contributions

• We adapt an existing algorithm kernel 2SLS to observed covariates.

• For challenge a), we tune kernel lengthscales so that the algorithm adapts to the
anisotropic smoothness of f∗.

• For challenge b), we introduce a novel Fourier measure of partial smoothing effect of
T .

• We prove upper learning rates for kernel 2SLS and the first minimax lower learning
rates for NPIV-O.

• Our analysis can be applied to an emerging field of proximal causal inference.

E[Y | Z ,X ] = (Tf∗)(W ,X ), with T : L2(PZX ) → L2(PWX ).

• W ,Z are proxy variables.
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Algorithm: Kernel 2SLS

• Suppose k : X × X → R is a symmetric positive definite function.
• There exists a unique reproducing kernel Hilbert space (RKHS) H associated with k

such that 1) k(x, ·) ∈ H. 2) the reproducing property ⟨f , k(x, ·)⟩H = f (x).
• When k(x, x′) = x⊤x′, H is the space of linear functions.

• k(x, ·) =: ϕ(x) ∈ H is a nonlinear ‘infinite’ dimensional feature map.
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• Tensor product kernels: K ([z, x], [z′, x′]) = kZ (z, z′) · kX (x, x′).
• The tensor product RKHS H = HX ⊗HZ with feature map

ϕ([z, x]) = ϕZ(z)⊗ ϕX (x).
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Algorithm: Kernel 2SLS

• NPIV-O: Learn f∗ from

E[Y | Z ,O] = E[f∗(X ) | Z ,O].

• Ill-posed inverse problem with T : L2(PXO) → L2(PZO):

Y = (Tf∗)(Z ,O) + υ, (Tf )(z, o) = E[f (X ,O) | Z = z,O = o].

• The domains are O = [0, 1]do , X = [0, 1]dx , Z = [0, 1]dz .
• We introduce four kernels kX , kZ , kO,1, kO,2 with associated HX ,HZ ,HO,1,HO,2.

• The reason we need two RKHSs on O will be clear later on.
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Algorithm: Kernel 2SLS

Main challenge: Unknown conditional expectation operator T !

• Conditional mean embedding:

F∗ : Z ×O → HX , F∗(z, o) = E[ϕX (X ) | Z = z,O = o] ∈ HX .

• It is a Hilbert-space valued integral (Bochner integral).

• ∀f ∈ HO,2 ⊗HX , we have

⟨f , ϕO,2(o)⊗ F∗(z, o)⟩HO,2⊗HX

= ⟨f , ϕO,2(o)⊗ E[ϕX (X ) | Z = z,O = o]⟩HO,2⊗HX

= E[⟨f , ϕO,2(o)⊗ ϕX (X )⟩HO,2⊗HX | Z = z,O = o] (Linearity of E)
= E[f (X ,O) | Z = z,O = o] (Reproducing property)

= (Tf )(z, o).

• F∗ is a kernel analogue of conditional expectation operator T .
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Algorithm: Kernel 2SLS

• Stage I: Learn F∗ with {(z̃i , õi , x̃i )}ñi=1.

F̂ξ := argmin
F∈G

1

ñ

ñ∑
i=1

∥ϕX (x̃i )− F (z̃i , õi )∥2HX
+ ξ∥F∥2G ,

• G is a vector-valued RKHS which contain mappings from Z ×O → HX .

• G is isometrically isomorphic to the space S2(HZ ⊗HO,1,HX ) of Hilbert-Schmidt
operators from HZ ⊗HO,1 to HX .

• ξ is a regularization parameter.

• F̂ξ admits a closed-form expression.
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Algorithm: Kernel 2SLS

• Stage II: Learn f∗ with {(zi , oi , yi )}ni=1.

f̂λ := inf
f ∈HX⊗HO,2

λ∥f ∥2HX⊗HO,2
+

1

n

n∑
i=1

(
yi −

〈
f , F̂ξ (zi , oi )⊗ ϕO,2 (oi )

〉
HX⊗HO,2

)2

.

• λ is a regularization parameter.

• f̂λ admits a closed-form expression.

• We employ Gaussian kernels

kγx (x, x
′) = exp

−
dx∑
j=1

(xj − x ′j )
2

γ2x

 , kγo (o, o
′) = exp

−
do∑
j=1

(oj − o ′j)
2

γ2o

 .

• The kernel lengthscales γx , γo are tuned adaptive to the anisotropic smoothness of f∗.
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Theory: Learning risk

• The learning risk is

∥f̂λ − f∗∥L2(PXO).

• Many papers in NPIV only prove learning rate of

∥T f̂λ − Tf∗∥L2(PZO),

which is a weaker metric.

• T is a bounded operator.

∥Tf ∥2L2(PZO)
= EZO

[
(E[f (X ,O) | Z ,O])2

]
≤ EZ ,O

[
E
[
f (X ,O)2 | Z ,O

]]
(Jensen inequality)

= ∥f ∥2L2(PXO)
.
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Assumptions: Smoothness

• Stage I target F∗ : F∗(z, o) = E[ϕX (X ) | Z = z,O = o] =
∫
ϕX (x)p(x | z, o)dx.

• The regularity of F∗ is completely decided by the conditional distribution PX |Z ,O .

Assumption (Conditional distribution)

Let mo ,mz ∈ N+. The map (z, o) 7→ p(x | z, o) satisfies:
ρ := max

|α|≤mz

max
|β|≤mo

sup
x∈X ,z∈Z,o∈O

|∂α
z ∂

β
o p(x | z, o)| < ∞

• Stage II target f∗ : X ×O → R.

Assumption (Anisotropic Besov space target)

f∗ ∈ Bsx ,so
2,∞ (X ×O) ∩ L∞(X ×O) .

• Can be extended to allow more anisotropic smoothness within X and O.

• The regularity of f∗ and F∗ on O might be different: two kernels kO,1, kO,2.
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Assumption: Partial smoothing effect of T

Assumption (Completeness)

For all functions f ∈ L2(PXO), E[f (X ,O) | Z ,O] = 0 implies that f (X ,O) = 0 almost
surely.

• Identification: N (T )⊥ = {0}.
• For non-asymptotic convergence, we need stronger assumptions that characterize the
degree of smoothing of T .

Definition (Partial Fourier transform)

For a function f : X ×O → R such that f (·, o) ∈ L1(Rdx ) for any o ∈ O, we define its
partial Fourier transform as

Fx [f ](ωx , o) =

∫
Rdx

f (x, o) exp(−i⟨x,ωx⟩) dx.
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Assumption: Partial smoothing effect of T

For any scalar γ ∈ (0, 1), we define the following two sets of functions:

LF(γ) :=

{
f : Rdx+do → R

∣∣∣∣∣ ∀o ∈ O, f (·, o) ∈ L1(Rdx ),

supp
(
Fx[f (·, o)]

)
⊆

{
ωx ∈ Rdx : ∥ωx∥2 ≤ γ−1

}}
.

HF(γ) :=

{
f : Rdx+do → R

∣∣∣∣∣ ∀o ∈ O, f (·, o) ∈ L1(Rdx ),

supp
(
Fx[f (·, o)]

)
⊆

{
ωx ∈ Rdx : ∥ωx∥2 ≥ γ−1

}}
.
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Assumption: Partial smoothing effect of T

0

𝑯𝑭(𝜸)

𝝎𝒙

𝝎𝒐

𝑯𝑭(𝜸) 𝑳𝑭(𝜸) 𝑳𝑭(𝜸)

Assumption (Fourier measure of partial contractivity of T )

∃c1 > 0 and ∃η1 ∈ [0,∞), such that ∀γ ∈ (0, 1) and ∀f ∈ HF(γ) ∩ L∞(PXO):

∥Tf ∥L2(PZO) ≤ c1γ
dxη1∥f ∥L2(PXO).

• It quantifies the partial smoothing effect of T on a function f ’s high-frequency
components with respect to X .
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Assumption: Partial smoothing effect of T

Assumption (Fourier measure of partial ill-posedness of T )

∃c0 > 0 and ∃η0 ∈ [0,∞), such that ∀γ ∈ (0, 1) and ∀f ∈ LF(γ) ∩ L∞(PXO):

∥Tf ∥L2(PZO) ≥ c0γ
dxη0∥f ∥L2(PXO).

• It captures the partial anti-smoothing behaviour of T on a function f ’s low frequency
components with respect to X .

• We set the constants c0 = c1 = 1 for simplicity.

• η0 ≥ η1.

• These assumptions hold for Fourier series (not Fourier transforms!) when
{en(x) = exp(i2nπx)}n≥1 are the eigenbasis for T ∗T and the eigenvalues of T ∗T
decay polynomically.

• These assumptions are hard to verify in practice.
• Link conditions, sieve measure of ill-posedness, etc.
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Assumption: Connection to RKHS

0

𝑯𝑭(𝜸)

𝝎𝒙

𝝎𝒐

𝑯𝑭(𝜸) 𝑳𝑭(𝜸) 𝑳𝑭(𝜸)

• An Gaussian RKHS can be defined through Fourier transform:

HX ,γx =

{
f : Rdx → R

∣∣∣∣∫
Rdx

∣∣∣∣Fx[f ] (ωx)

∣∣∣∣2 exp(1

4
γ2x ∥ωx∥22

)
dωx < ∞

}
,

• For f ∈ HX ,γx , the bulk of its Fourier spectrum Fx[f ](ωx) would belong to the ball
{ωx : ∥ωx∥2 ≤ γ−1

x } with remaining spectrum decaying exponentially as ωx → ∞.

• We formulate our Assumptions with Fourier transforms for its generality.
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Assumptions: Data generating distribution

Assumption (Upper and lower bounded marginal densities)

The joint probability measures PZO and PXO admit probability density functions pZO and
pXO . There exists a universal constant a > 0 such that a−1 ≥ pZO(z, o) ≥ a for all
(z, o) ∈ [0, 1]dz+do and a−1 ≥ pXO(x, o) ≥ a for all (x, o) ∈ [0, 1]dx+do .

• Standard assumptions for Besov spaces.

Assumption (Subgaussian noise)

∀(z, o) ∈ Z ×O, the residual υ := Y − (Tf∗)(Z ,O) is σ-subgaussian conditioned on
Z = z,O = o.

• Standard assumptions for high probability upper bound.
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Theory: Upper bounds

1. Suppose all assumptions hold.
2. Suppose stage I kernels kO and kZ are Matérn kernels whose associated RKHS HO

and HZ are norm equivalent to Wmo
2 (O) and Wmz

2 (Z). Define d† = (dzm
−1
z ) ∨ (dom

−1
o ).

3. Suppose stage II kernels kX ,γx and kO,γo are Gaussian kernels with lengthscales

γx = n
−

1
dx

1+2( sx
dx

+η1)+
do
so

( sx
dx

+η1) , γo = n
−

1
so

( sx
dx

+η1)

1+2( sx
dx

+η1)+
do
so

( sx
dx

+η1) .

4. Stage I regularization ξ = ñ
− 1

1+d† and stage II regularization λ = n−1.
Then, we have with high probability,

∥∥∥f̂λ − f∗

∥∥∥
L2(PXO)

≲ n
−

sx
dx

+η1−η0

1+2( sx
dx

+η1)+
do
so

( sx
dx

+η1) · (log n)
dx+do+1+dxη0

2 .
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Theory: Upper bounds

Upper Bound: ÕP

n
−

sx
dx

+η1−η0

1+2( sx
dx

+η1)+
do
so

sx
dx

+ do
so

η1

 .

• We take η1 = η0 = η such that we have a precise characterization of the partial
smoothing effect of T .

• Our derived upper rate interpolates between the known optimal L2-rates for NPIV
without observed covariates and anisotropic kernel ridge regression.

• When η0 = η1 = 0, the upper bound simplifies to ÕP(n
− 1

2s̃+1 ) with
s̃ = (do/so + dx/sx)

−1 beings the intrinsic smoothness, which matches the known
optimal rate in NPR.

• When do = 0 and η0 = η1 > 0, our upper bound simplifies to ÕP(n
− sx

dx+2(sx+ηdx ) ), which
matches the known optimal rate in NPIV.
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Theory: Lower bounds

For all learning methods D 7→ f̂D (D = (zi , xi , oi , yi )
n
i=1), ∀τ > 0, and sufficiently large

n ≥ 1, there exists a distribution P over (Z ,X ,O,Y ) inducing a NPIV-O model

Y = f∗(X ,O) + ϵ, E[ϵ|Z ,O] = 0 ,

such that all assumptions in the upper bound are satisfied, and with high probability,

∥∥∥f̂D − f∗

∥∥∥
L2(PXO)

≳ n
−

sx
dx

1+2( sx
dx

+η1)+
do
so

sx
dx (log n)−dx .
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Lower Bounds

Lower Bound: ÕP

n
−

sx
dx

1+2( sx
dx

+η)+ do
so

sx
dx

 , Upper Bound: ÕP

n
−

sx
dx

1+2( sx
dx

+η)+ do
so

sx
dx

+ do
so

η

 .

• The lower bounds also interpolate between the known optimal L2-rates for NPIV
without observed covariates and anisotropic kernel ridge regression, same as the
upper bounds.

• There exists a gap between the upper and lower bounds even when η1 = η0.

• We hypothesize that the gap is an inherent limitation of the kernel 2SLS algorithm.
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Conclusions

• Presence of observed covariates pose additional theoretical challenges in NPIV-O.
• a) Anisotropic smoothness
• b) Partial smoothing effect of T

• To tackle challenge a), we modify the existing kernel 2SLS to observed covariates
with adaptive kernel lengthscales.

• To tackle challenge b), we propose a novel Fourier measure of partial smoothing
effect.

• We prove an upper bound for kernel 2SLS and the first minimax lower bound for
NPIV-O.

• We identify a gap between our bounds which we posit is fundamental to kernel 2SLS.
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