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Background: Causal Inference

® The causal effect of smoking X on the risk of lung cancer Y.

® Unobserved confounding e that affects both X and Y: gene, occupation, childhood.

® |t takes long for scientific community to agree that smoking increases risk of lung
cancer.
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Background: Instrumental Variable

® In this talk, we only consider additive confounding.
Y =f(X)+e Ele| X] #El[¢] =0.

® f. is the target of interest.
® Dose response curve, causal parameter, potential outcome, structural function, etc.

® Regression only recovers the conditional mean E[Y | X] # £.(X) and always outputs
a biased estimate.
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Background: Instrumental Variable

® Instrumental variables Z affect Y only through X and is independent of e.
® A valid instrumental variable could be ‘price of cigarette’.

Y=~f(X)+¢ Ele|X]#0, Ele|Z]=E[=0.
e Conditioning on both sides

E[Y | 2] = E[£(X) | Z].

P is the joint data distribution over Z, X, Y. Pz, Px, Py denote the marginals.
In fact an ill-posed inverse problem

Y = (TE)(Z)+v, E[v]|Z]=0,

where T is a conditional expectation operator.

T:[3(Px) = L?(Pz), (Tf)(z)=E[f(X)|Z=2].

lll-posedness: T is compact so T! is unbounded.
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Background: Instrumental Variable

® In practice, one has access to observed covariates (confounders) O.
® For instance, one's occupation.

Y =£f(X,0)+¢ Ele|Z, 0]=0.
® An ill-posed inverse problem
Y =(TH)(Z,0)+v, Ev|Z 0]=0,
® where T is a conditional expectation operator.
T : L*(Pxo) = L*(Pz0), (Tf)(z,0) =E[f(X,0)|Z=2,0=o0].
® \We focus on nonparametric instrumental variable with observed covariates (NPIV-O).
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Setting: NPIV-O

® The observed covariates O brings two advantages
® Practitioners adjust for as many observed covariates as possible.

® QOccupation, income, age, disease history, etc.
® Personalized causal effect estimation by conditioning on O = o.
® The effect of smoking on lung cancer for manual laborers.
® The observed covariates O brings two challenges for its theoretical analysis

® a) The anisotropic smoothness of f, : X x O — R.
® b) The structural dichotomy of T between a compact operator and an identity operator.

®a={g € L*(Pxo) | 3g’ € L*(Px) such that ¥x € X,0 € O, g(x,0) = g'(x)},
&g = {g € L*(Pxo) | 3¢’ € L*(Po) such that Vx € X,0 € O, g(x,0) = g'(0)} .

® T*T|g, (T*T restricted to &4) is compact; T*T|g, is an identity operator.
® Partial smoothing effect of T.
® Existing work on NPIV relies on the compactness of T.

® Stratification on O is a simple yet statistically inefficient fix.
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Contributions

® \We adapt an existing algorithm kernel 2SLS to observed covariates.

® For challenge a), we tune kernel lengthscales so that the algorithm adapts to the
anisotropic smoothness of f,.

® For challenge b), we introduce a novel Fourier measure of partial smoothing effect of
T.

e We prove upper learning rates for kernel 2SLS and the first minimax lower learning
rates for NPIV-O.

e Qur analysis can be applied to an emerging field of proximal causal inference.
E[Y | Z,X] = (Tf)(W, X), with T : L*(Pzx) — L*(Pwx).

® W, Z are proxy variables.

7/26



Algorithm: Kernel 2SLS

Suppose k : X x X — R is a symmetric positive definite function.
There exists a unique reproducing kernel Hilbert space (RKHS) # associated with k
such that 1) k(x,-) € H. 2) the reproducing property (f, k(x,-))y = f(x).
® When k(x,x') = x"x/, H is the space of linear functions.
k(x,-) =: ¢(x) € H is a nonlinear ‘infinite’ dimensional feature map.

Linear Regression Kernel Ridge Regression

— Linear Regression — Kemel Ridge Regression (RBF)
Data

[ 1 2 3 a s o 1 2 3

Tensor product kernels: 8([z,x], [Z/,X']) = kz (z,Z) - kx (x,X).
The tensor product RKHS H = Hy ® Hz with feature map

¢([Z,X]) = ¢Z(Z) ® ¢)((X).
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Algorithm: Kernel 2SLS

NPIV-O: Learn f. from

E[Y | Z,0] = E[f.(X) | Z, O].

lll-posed inverse problem with T : L2(Pxo) — L?(Pzo):
Y =(T£)(Z,0) +v, (Tf)(z,0)=E[f(X,0)|Z=20=o0].

® The domains are O = [0,1]%, X = [0,1]%, Z = [0, 1]%.
® We introduce four kernels ky, kz, ko 1, ko2 with associated Hy, Hz,Ho1,Ho,2.
® The reason we need two RKHSs on O will be clear later on.
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Algorithm: Kernel 2SLS

Main challenge: Unknown conditional expectation operator T! )

e Conditional mean embedding:
Fi:Zx0O —Hxy, Fiz,0)=E[px(X)|Z=2,0=0]€Hx.

® |t is a Hilbert-space valued integral (Bochner integral).
* Vf € Hop® Hx, we have

(f,00,2(0) ® Fi(z,0)) 1o ,0Hn
= (f,00.2(0) ® E[px(X) | Z=2,0 = 0])np ,0ma
= E[(f, ¢0,2(0) ® ¢x (X)) 10,01y | L =2,0 = 0] (Linearity of E)
=E[f(X,0)| Z=12,0 = 0] (Reproducing property)
= (Tf)(z, o).

® F. is a kernel analogue of conditional expectation operator T.
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Algorithm: Kernel 2SLS

e Stage |: Learn F, with {(2;,8;,%)}™,.

, 1 . .
Fe = argminz 3 llox (%) = F (2,85, + EIFIG.
i=1

® G is a vector-valued RKHS which contain mappings from Z x O — Hy.

® G is isometrically isomorphic to the space So(Hz ® Ho,1, Hx) of Hilbert-Schmidt
operators from Hz ® Ho1 to Hx.

® ¢ is a regularization parameter.

e f¢ admits a closed-form expression.
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Algorithm: Kernel 2SLS

e Stage II: Learn £, with {(z;,0;,yi)}";.

A 1 <& . 2
A= inf  M|F? 4= -—<f7F 2,0)) ® 0.> ,
= g M Bevnon + 53 (= (1 Fe(aro) @ d0a (),
® ) is a regularization parameter.

e f, admits a closed-form expression.

® We employ Gaussian kernels

dx N2 do \2
Xi — X- o; — O
o) —exp [~ I i oo e [-30 12520
j=1 Vx = Yo

The kernel lengthscales 7y, 7o are tuned adaptive to the anisotropic smoothness of ..
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Theory: Learning risk

® The learning risk is
1A = flli2(pyo)-
® Many papers in NPIV only prove learning rate of
ITA = Th ] 2(ps0):

which is a weaker metric.

® T is a bounded operator.

I TF1122(p,0) = Ezo [(E[f(X,0) | Z, 0])?]
<Ezo[E[f(X,0)*|Z,0]] (Jensen inequality)

- H’rHiQ(Pxo)'

13/26



Assumptions: Smoothness

e Stage | target F, : Fi(z,0) = E[¢px(X) | Z=2,0 = 0] = [ ¢x(x)p(x | z, 0)dx.
® The regularity of F, is completely decided by the conditional distribution Px|z o.

Assumption (Conditional distribution)

Let my, m, € N*. The map (z,0) — p(x | z,0) satisfies:

= max max sup 10208 p(x | z,0)| < o0
|| <m; |B|<mo xe Xz Z,0€0

e Stage Il target ., : X x O — R.

Assumption (Anisotropic Besov space target)
fo € Byl (X x O)N L®(X x O) .

® Can be extended to allow more anisotropic smoothness within X and O.
® The regularity of £, and F, on O might be different: two kernels ko 1, ko 2.
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Assumption: Partial smoothing effect of T

Assumption (Completeness)

For all functions f € L?(Pxo), E[f(X, 0) | Z, 0] = 0 implies that f(X, O) = 0 almost
surely.

® Identification: N(T)*+ = {0}.

® For non-asymptotic convergence, we need stronger assumptions that characterize the
degree of smoothing of T.

Definition (Partial Fourier transform)

For a function f : X x O — R such that f(-,0) € L}(R%) for any o € O, we define its
partial Fourier transform as

Fx[fl(wx,0) = f(x,0) exp(—i(x,wx)) dx.
R

15/26



Assumption: Partial smoothing effect of T

For any scalar v € (0,1), we define the following two sets of functions:

supp(Fx[f (-, 0)]) € {wx € R% : |lwyllz < 7_1} }

HF(y) == {f R%Fd LR | Vo€ O, f(-,0) € Ll(Rdx)’

supp (Fx[f (-, 0)]) < {“’x € R% : [lwyll2 > 7_1} }
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Assumption: Partial smoothing effect of T

W,

Assumption (Fourier measure of partial contractivity of T)

e > 0 and 3y € [0, 00), such that Vy € (0,1) and Vf € HF(y) N L>(Pxo):
I Tl 2(pye) < Cl'ydxanfHB(Pxo)-

® |t quantifies the partial smoothing effect of T on a function f's high-frequency
components with respect to X.
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Assumption: Partial smoothing effect of T

Assumption (Fourier measure of partial ill-posedness of T)

Jdep > 0 and g € [0, 00), such that ¥y € (0,1) and Vf € LF(v) N L*°(Pxo):
I Tl 2(py0) = CO'denOHfHL?(PXO)-

® |t captures the partial anti-smoothing behaviour of T on a function f's low frequency
components with respect to X.

® We set the constants ¢g = ¢; = 1 for simplicity.

® N0 = M.
® These assumptions hold for Fourier series (not Fourier transforms!) when
{en(x) = exp(i2nmx)},>1 are the eigenbasis for T*T and the eigenvalues of T*T
decay polynomically.
® These assumptions are hard to verify in practice.
® Link conditions, sieve measure of ill-posedness, etc.
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Assumption: Connection to RKHS

® An Gaussian RKHS can be defined through Fourier transform:

1
Hu e = {f : R* 5 R ‘/d exp <47§ ||wx\|§> dwy < OO} ;
Rax

® For f € Hx ,, the bulk of its Fourier spectrum Fx[f](wx) would belong to the ball
{wy : [|wx]l2 < v} with remaining spectrum decaying exponentially as w, — oc.

2
Fx[f](wx)

® \We formulate our Assumptions with Fourier transforms for its generality.
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Assumptions: Data generating distribution

Assumption (Upper and lower bounded marginal densities)

The joint probability measures Pzo and Pxo admit probability density functions pzo and
pxo. There exists a universal constant a > 0 such that a—! > pzo(z,0) > a for all
(z,0) € [0,1]%%% and a=! > pxo(x,0) > a for all (x,0) € [0, 1]%Fd.

e Standard assumptions for Besov spaces.

Assumption (Subgaussian noise)

V(z,0) € Z x O, the residual v := Y — (Tf.)(Z, O) is o-subgaussian conditioned on
Z=2,0=o0.

e Standard assumptions for high probability upper bound.

20/26



Theory: Upper bounds

1. Suppose all assumptions hold.

2. Suppose stage | kernels k» and kz are Matérn kernels whose associated RKHS H o
and Hz are norm equivalent to W, (O) and W,™(Z). Define d' = (d,m;1) v (dom3?).
3. Suppose stage Il kernels kx . and ko, are Gaussian kernels with lengthscales

1 1 (

dx

d,
Y =n 1+2(§X+n1)+ °(dx+n1)
o =

dx +m1)

1 F +n1)+ Do (& de+m)

Yo =N
__1

4. Stage | regularization £ = /i 1+d7 and stage Il regularization A = n~1.

Then, we have with high probability,

dx +n1—m0

Sn 1+2( +n1)+ °( +n1)
L2(Pxo)

dx+do+1+dxmg

- (o)

21/26



Theory: Upper bounds

_ detm=mo
~ Sx do sx | do
Upper Bound: Op [ n " atmitssatsem

® We take 171 = g = 7 such that we have a precise characterization of the partial
smoothing effect of T.
® QOur derived upper rate interpolates between the known optimal L2-rates for NPIV
without observed covariates and anisotropic kernel ridge regression.
® When 19 = n; = 0, the upper bound simplifies to @p(n_ﬁ) with
§ = (d,/so + dx/sx) ! beings the intrinsic smoothness, which matches the known
optimal rate in NPR.
® When d, = 0 and 19 = 11 > 0, our upper bound simplifies to @p(n7 dx+2<5xx+"dx>), which
matches the known optimal rate in NPIV.

22/26



Theory: Lower bounds

For all learning methods D — fp (D = (zi,xj,0;,y;)"_1), VT > 0, and sufficiently large
n > 1, there exists a distribution P over (Z, X, O, Y) inducing a NPIV-O model

Y =£f(X,0)+e¢ ElZz,0]=0,

such that all assumptions in the upper bound are satisfied, and with high probability,

Sx

o dx
5x do sx.
> n H2(ge+m)+ 58 g (

—dy
L2(Pxo) ™ ) .

HfD—f* log n
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Sx Sx
o dx _ dx
~ 14-2( 35X do sx. ~ 142( 3% do sx  do
Lower Bound: Op | n "&™*ssd | Upper Bound: Op | n a5 a5

® The lower bounds also interpolate between the known optimal L?-rates for NPIV
without observed covariates and anisotropic kernel ridge regression, same as the
upper bounds.

® There exists a gap between the upper and lower bounds even when 71 = 9.
® We hypothesize that the gap is an inherent limitation of the kernel 2SLS algorithm.
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Conclusions

® Presence of observed covariates pose additional theoretical challenges in NPIV-O.

® a) Anisotropic smoothness
® b) Partial smoothing effect of T

® To tackle challenge a), we modify the existing kernel 2SLS to observed covariates
with adaptive kernel lengthscales.

® To tackle challenge b), we propose a novel Fourier measure of partial smoothing
effect.

e We prove an upper bound for kernel 25LS and the first minimax lower bound for
NPIV-O.

e We identify a gap between our bounds which we posit is fundamental to kernel 2SLS.
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