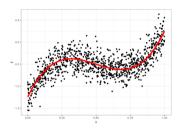
Towards a Unified Analysis of Neural Networks in Nonparametric Instrumental Variable Regression: Optimization and Generalization

Zonghao Chen Atsushi Nitanda Arthur Gretton Taiji Suzuki

October 30, 2025

Background

• Nonparametric regression is used everywhere in statistics.



- Regression fails when ...
 - there exist unobserved confounding

Background: Causal inference and Instrumental Variable

- The causal effect of smoking X on the risk of lung cancer Y.
- Unobserved confounding ϵ that affects both X and Y: gene, occupation, childhood.

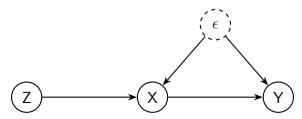
$$Y = h_{\circ}(X) + \epsilon$$
, where $\epsilon \not\perp X$.

• Instrumental variable Z that affects Y only through X: price of the cigarette.

$$\epsilon \perp Z$$

Conditioning both sides on Z

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h_{\circ}(X) \mid Z]. \tag{NPIV}$$



Background: NPIV versus NPR

- Nonparametric regression (NPR): $Y = h_o(X) + \epsilon$ with $\epsilon \perp X$.
 - Conditioning both sides on X:

$$\mathbb{E}[Y \mid X] = h_{\circ}(X). \tag{NPR}$$

- Target $h_{\circ} = \arg \min_{h} \mathbb{E}_{YX}[(Y h(X))^{2}].$
- Least squares estimator

$$\theta^* = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n (h_{\theta}(\mathbf{x}_i) - \mathbf{y}_i)^2, \quad \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n \sim P_{XY}.$$

- h_{θ} is a neural network parameterized by θ .
- Nonparametric instrumental variable regression (NPIV): $Y = h_o(X) + \epsilon$ with $\epsilon \not\perp X$ but $\epsilon \perp Z$.
 - $\mathbb{E}[Y \mid X] = h_{\circ}(X) + \mathbb{E}[\epsilon \mid X] \neq h_{\circ}(X)$.
 - Conditioning both sides on Z:

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h_{\circ}(X) \mid Z]. \tag{NPIV}$$

Problem: How to estimate h_{\circ} ?

Background: NPIV and 2SLS

• Define $T: L^2(P_X) \to L^2(P_Z)$ as the unknown conditional expectation operator defined by $(Tf)(Z) = \mathbb{E}[f(X) \mid Z]$.

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h_{\circ}(X) \mid Z] =: (Th_{\circ})(Z). \tag{NPIV}$$

- Target $h_0 = \arg\min_h \mathbb{E}_{YZ}[(Y (Th)(Z))^2].$
 - T is unknown yet it is a conditional expectation and hence can be learned via regression.
- Two-stage least squares (2SLS)

$$\theta_{z}^{*}(\theta_{x}) = \arg\min_{\theta_{z}} \frac{1}{m} \sum_{i=1}^{m} (h_{\theta_{z}}(\mathbf{z}_{i}) - h_{\theta_{x}}(\mathbf{x}_{i}))^{2}, \quad \{\mathbf{x}_{i}, \mathbf{z}_{i}\}_{i=1}^{m} \sim P_{XZ}$$

$$\theta_{x}^{*} = \arg\min_{\theta_{x}} \frac{1}{n} \sum_{i=1}^{n} (h_{\theta_{z}^{*}(\theta_{x})}(\mathbf{z}_{i}) - \mathbf{y}_{i})^{2}, \quad \{\mathbf{z}_{i}, \mathbf{y}_{i}\}_{i=1}^{n} \sim P_{ZY}.$$

$$(2SLS)$$

• $h_{\theta_z^*(\theta_x)}(\mathbf{z}_i) \approx \mathbb{E}[h_{\theta_x}(X) \mid Z = \mathbf{z}_i] = (Th_{\theta_x})(\mathbf{z}_i)$.

Background: Offline reinforcement learning

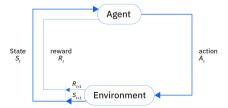
- s: state, a: action, r: reward, γ : discount factor.
- $Q(s, a) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a]$ denotes the expected long-term return when taking action a in state s.
- Bellman equation:

$$\mathbb{E}[r \mid s, a] = Q(s, a) - \gamma \mathbb{E}[Q(s', a') \mid s, a].$$

The Bellman equation shars the same structure as NPIV:

$$\mathbb{E}[Y\mid Z]=\mathbb{E}[h_{\circ}(X)\mid Z].$$

• Correspondence: $Y \rightarrow r$, $Z \rightarrow (s, a)$, $X \rightarrow (s', a')$.



Target: Optimization and Generalization

- Two-stage least squares (2SLS)
 - Both h_{θ_x} and h_{θ_z} are neural networks.

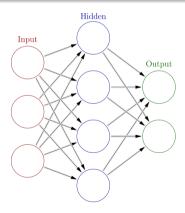
Stage I:
$$\theta_z^*(\theta_x) = \arg\min_{\theta_z} \frac{1}{m} \sum_{i=1}^m (h_{\theta_z}(\mathbf{z}_i) - h_{\theta_x}(\mathbf{x}_i))^2, \quad \{\mathbf{x}_i, \mathbf{z}_i\}_{i=1}^m \sim P_{XZ}$$

$$\theta_x^* = \arg\min_{\theta_x} \frac{1}{n} \sum_{i=1}^n (h_{\theta_z^*(\theta_x)}(\mathbf{z}_i) - \mathbf{y}_i)^2, \quad \{\mathbf{z}_i, \mathbf{y}_i\}_{i=1}^n \sim P_{ZY}.$$
(2SLS)

Bilevel optimization theory: Does gradient based algorithm can actually find the global optimum θ_z^*, θ_x^* ? If it does, what is the iteration complexity?

Statistical theory: Given the global optimal θ_z^*, θ_x^* , is $h_{\theta_x^*}$ a consistent estimator of h_o ? If it does, what is the sample complexity?

Mean-field neural networks



Background: Mean-field two-layer neural networks

- Consider neural networks with a single hidden layer of size *N*:
 - $\mathscr{X} = [x^{(1)}, \dots, x^{(N)}] \in (\mathbb{R}^{d_x})^N$ are the network parameters and \mathbf{x} is the network input

$$h(\mathbf{x}, \mathscr{X}) = \frac{1}{N} \sum_{i=1}^{N} \Psi(\mathbf{x}, x^{(i)})$$

- Here, $\Psi(\mathbf{x}, x) = w_2 a(w_1^{\top} \mathbf{x} + b)$ with parameters $x = (w_1, w_2, b)$ and a being an activation function.
- As the empirical distribution $\frac{1}{N} \sum_{i=1}^{N} \delta_{x^{(i)}} \to \mu$ as $N \to \infty$:

$$h_{\mu}(\mathbf{x}) = \int \Psi(\mathbf{x}, x) \mathrm{d}\mu(x) = \mathbb{E}_{X \sim \mu}[\Psi(\mathbf{x}, X)].$$

• So called "mean-field neural network".

Question: What is the purpose of considering the mean-field limit?

• Consider the squared loss with ℓ_2 -norm regularization

$$F(\mu) := \frac{1}{2} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \rho} \left[(\mathbb{E}_{X \sim \mu} [\Psi(\mathbf{x}, X)] - \mathbf{y})^2 \right] + \frac{\zeta}{2} \mathbb{E}_{X \sim \mu} [\|X\|^2],$$

- ρ is a data distribution, e.g. $\rho = \frac{1}{n} \sum_{i=1}^{n} \delta_{(\mathbf{x}_i, \mathbf{y}_i)}$.
- F is linear convex in μ : for any probability measures $\mu, \nu \in \mathcal{P}$,

$$F(\vartheta \mu + (1 - \vartheta)\nu) \le \vartheta F(\mu) + (1 - \vartheta)F(\nu), \quad \forall \vartheta \in (0, 1).$$

• Optimization problem in \mathcal{P} : Wasserstein gradient flow!

Definition (Wasserstein gradient)

The first variation δG of $G: \mathcal{P} \to \mathbb{R}$ at $\mu \in \mathcal{P}$ is defined as a functional $\mathcal{P} \times \mathbb{R}^d \to \mathbb{R}$ that satisfies $\lim_{\epsilon \to 0} \epsilon^{-1} G(\epsilon \nu + (1 - \epsilon)\mu) = \int \delta G(\mu)(x) \mathrm{d}(\nu - \mu)$ for any $\nu \in \mathcal{P}(\mathbb{R}^d)$. The Wasserstein gradient ∇G of $G: \mathcal{P} \to \mathbb{R}$ at $\mu \in \mathcal{P}$ is defined as a functional $\mathcal{P} \times \mathbb{R}^d \to \mathbb{R}^d$ that satisfies $\nabla G(\mu)(\cdot) = \nabla \delta G(\mu)(\cdot)$.

• Wasserstein gradient of F at $\mu \in \mathcal{P}$ evaluated at $x \in \mathbb{R}^d$.

$$\nabla F(\mu)(\mathbf{x}) = \mathbb{E}_{(\mathbf{x},\mathbf{y}) \sim \rho} [(\mathbb{E}_{X \sim \mu} [\Psi(\mathbf{x}, X)] - \mathbf{y}) \nabla \Psi(\mathbf{x}, \mathbf{x})] + \zeta \mathbf{x}.$$

• Wasserstein gradient of F at $\mu_{\mathscr{X}} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}^{(i)}}$ evaluated at $\mathbf{x}^{(i)} \in \mathbb{R}^d$.

$$\nabla F(\mu_{\mathscr{X}})(\mathbf{x}^{(i)}) = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\rho} \left[\left(\frac{1}{N} \sum_{i=1}^{N} \Psi(\mathbf{x},\mathbf{x}^{(i)}) - \mathbf{y} \right) \nabla \Psi(\mathbf{x},\mathbf{x}^{(i)}) \right] + \zeta \mathbf{x}^{(i)}.$$

• Euclidean gradient of the loss

$$L(\mathscr{X}) := \frac{1}{2} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \rho} \left[\left(\frac{1}{N} \sum_{i=1}^{N} \Psi(\mathbf{x}, x^{(i)}) - \mathbf{y} \right)^{2} \right] + \frac{\zeta}{2} \frac{1}{N} \sum_{i=1}^{N} [\|x^{(i)}\|^{2}],$$

$$\nabla_{\mathbf{x}^{(i)}} L(\mathcal{X}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \rho} \left[\left(\frac{1}{N} \sum_{i=1}^{N} \Psi(\mathbf{x}, \mathbf{x}^{(i)}) - \mathbf{y} \right) \frac{\nabla \Psi(\mathbf{x}, \mathbf{x}^{(i)})}{N} \right] + \frac{\zeta}{N} \mathbf{x}^{(i)}$$

• The Wasserstein gradient descent $x_{s+1}^{(i)} = x_s^{(i)} - \gamma \nabla F(\mu_{\mathscr{X},s})(x_s^{(i)})$ coincides with the Euclidean gradient descent $x_{s+1}^{(i)} = x_s^{(i)} - \gamma \nabla_{x^{(i)}} L(\mathscr{X}_s)$ with a rescaled learning rate!

• At iteration $s \in \{0, ..., S\}$ and for any $i \in \{1, ..., N\}$:

$$x_{s+1}^{(i)} = x_s^{(i)} - \gamma \nabla F(\mu_{\mathscr{X}})(x_s^{(i)}) + \sqrt{2\sigma\gamma} \, \xi_s^{(i)}.$$

- $\{\xi_s^{(i)}\}_{i=1}^N$ are N i.i.d samples from d dimensional unit Gaussian.
- Define an entropic regularized objective $\mathscr{F}(\mu) = F(\mu) + \sigma \mathrm{Ent}(\mu)$.
 - $\operatorname{Ent}(\mu) = \int \log \mu(x) \mu(x) dx$.
 - Noisy gradient descent is Wasserstein gradient descent of \mathscr{F} .
- The global optimum $\mu^* := \arg \min_{\mu} \mathscr{F}(\mu)$.

Question: Does noisy gradient descent can actually find the global optimum μ^* ? If it does, what is the iteration complexity?

Assumption (Bounded and smooth neural networks)

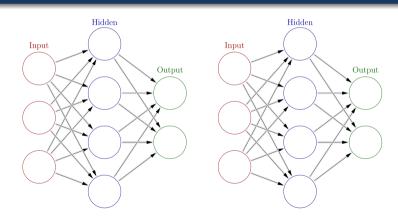
There exists a universal positive constant R such that $\sup_{x \in \mathbb{R}^{d_x}, \mathbf{x} \in \mathcal{X}} |\Psi_{\mathbf{x}}(x)| \leq R$ and $\sup_{x \in \mathbb{R}^{d_x}, \mathbf{x} \in \mathcal{X}} |\nabla_x \Psi_{\mathbf{x}}(x)| \leq R$.

- Define $h_*(\mathbf{x}) = \int \Psi(\mathbf{x}, x) d\mu_*(x)$ the output of the optimal mean-field neural network.
- Define $\hat{h}_S(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N \Psi(\mathbf{x}, x_S^{(i)})$ the output of a trained neural network at time S.
- For any input $\mathbf{x} \in \mathcal{X}$,

$$\mathbb{E}\left[\left(\hat{h}_{S}(\mathbf{x}) - h_{*}(\mathbf{x})\right)^{2}\right] \leq \underbrace{\mathcal{O}(N^{-1})}_{\text{finite particle error}} + \underbrace{\mathcal{O}\left(\frac{\gamma^{2} + \gamma\sigma d}{C_{\text{LSI}}\sigma}\right)}_{\text{time discretization error}} + \underbrace{\mathcal{O}(\exp(-\gamma C_{\text{LSI}}\sigma S))}_{\text{optimization error}}.$$

- Expectation is taken over the randomness in initialization and noise at each iteration.
- $C_{LSI} = \Theta(\sigma^{-1} \exp(-\zeta^{-1}\sigma^{-1}\sqrt{d}))$ describes the 'difficulty' of learning μ_* .
 - It reflects the curse of dimensionality .

Mean-field neural networks in 2SLS



Mean-field perspective of 2SLS

• Two-stage least squares (2SLS)

Stage I:
$$\mathscr{Z}^*(\mathscr{X}) = \underset{\mathscr{Z} \in (\mathbb{R}^{d_z})^{N_x}}{\arg \min} \quad \frac{1}{2} \mathbb{E}_{\rho} \left[(h(\mathbf{z}, \mathscr{Z}) - h(\mathbf{x}, \mathscr{X}))^2 \right],$$
Stage II:
$$\mathscr{Z}^* = \underset{\mathscr{X} \in (\mathbb{R}^{d_x})^{N_z}}{\arg \min} \quad \frac{1}{2} \mathbb{E}_{\rho} \left[(h(\mathbf{z}, \mathscr{Z}^*(\mathscr{X})) - \mathbf{y})^2 \right].$$
 (1)

- $h(\mathbf{x}, \mathscr{X}) = \frac{1}{N_x} \sum_{i=1}^{N_x} \Psi_{\mathbf{x}}(x^{(i)})$ where $\mathscr{X} = [x^{(1)}, \dots, x^{(N_x)}] \in (\mathbb{R}^{d_x})^{N_x}$ are the network parameters and \mathbf{x} is the network input.
- $h(\mathbf{z}, \mathscr{Z}) = \frac{1}{N_z} \sum_{i=1}^{N_z} \Psi_{\mathbf{z}}(z^{(i)})$ where $\mathscr{Z} = [z^{(1)}, \dots, z^{(N_z)}] \in (\mathbb{R}^{d_z})^{N_z}$ are the network parameters and \mathbf{z} is the network input.
- ρ is the data distribution over $(\mathbf{x}, \mathbf{z}, \mathbf{y})$.
- A shorthand notation: $\Psi_{\mathbf{x}}(x^{(i)}) = \Psi(\mathbf{x}, x^{(i)})$ and $\Psi_{\mathbf{z}}(z^{(i)}) = \Psi(\mathbf{z}, z^{(i)})$.

Mean-field perspective of 2SLS

- Mean field neural networks $\int_{\mathbb{R}^{d_x}} \Psi_{\mathbf{x}}(x) \mathrm{d}\mu_{\mathbf{x}}(x)$ and $\int_{\mathbb{R}^{d_z}} \Psi_{\mathbf{z}}(z) \mathrm{d}\mu_{\mathbf{z}}(z)$ where μ_x, μ_z are the mean-field limit of the hidden layer.
- ℓ_2 and entropic regularizations for both stages:

$$\begin{split} \text{Stage I:} \quad \mu_{\mathbf{z}}^*(\mu_{\mathbf{x}}) &= \underset{\mu_{\mathbf{z}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{z}}})}{\text{arg min}} \frac{1}{2} \mathbb{E}_{\rho} [(\int \Psi_{\mathbf{z}} \mathrm{d}\mu_{\mathbf{z}} - \int \Psi_{\mathbf{x}} \mathrm{d}\mu_{\mathbf{x}})^2] + \frac{\zeta_1}{2} \mathbb{E}_{\mu_{\mathbf{z}}} [\|\mathbf{z}\|^2] + \sigma_1 \mathrm{Ent}(\mu_{\mathbf{z}}), \\ \text{Stage II:} \quad \mu_{\mathbf{x}}^* &= \underset{\mu_{\mathbf{x}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{x}}})}{\text{arg min}} \frac{1}{2} \mathbb{E}_{\rho} [(\int \Psi_{\mathbf{z}} \mathrm{d}\mu_{\mathbf{z}}^*(\mu_{\mathbf{x}}) - \mathbf{y})^2] + \frac{\zeta_2}{2} \mathbb{E}_{\mu_{\mathbf{x}}} [\|\mathbf{x}\|^2] + \sigma_2 \mathrm{Ent}(\mu_{\mathbf{x}}). \\ \text{(Bi-MFLD)} \end{split}$$

- A bilevel optimization problem over $\mathcal{P}(\mathbb{R}^{d_x})$ and $\mathcal{P}(\mathbb{R}^{d_z})$.
 - Popular methods like explicit gradient (autodiff) and implicit gradient (high-order gradient) do not work.
 - For fixed μ_x , Stage I $\mu_z^*(\mu_x)$ can be solved via standard mean field Langevin dynamics.

Mean-field perspective of 2SLS

Some notation:

$$F_{1}(\mu_{x}, \mu_{z}) = \frac{1}{2} \mathbb{E}_{\rho} [(\int \Psi_{z} d\mu_{z} - \int \Psi_{x} d\mu_{x})^{2}] + \frac{\zeta_{1}}{2} \mathbb{E}_{\mu_{z}} [\|z\|^{2}]$$

$$F_{2}(\mu_{x}, \mu_{z}) = \frac{1}{2} \mathbb{E}_{\rho} [(\int \Psi_{z} d\mu_{z} - \mathbf{y})^{2}] + \frac{\zeta_{2}}{2} \mathbb{E}_{\mu_{x}} [\|x\|^{2}].$$

- $\mathscr{F}_1(\mu_x, \mu_z) = F_1(\mu_x, \mu_z) + \sigma_1 \mathrm{Ent}(\mu_z)$ and $\mathscr{F}_2(\mu_x, \mu_z) = F_2(\mu_x, \mu_z) + \sigma_2 \mathrm{Ent}(\mu_x)$.
- Bilevel optimization problem is

$$\text{Stage I:} \quad \mu_{\mathbf{z}}^*(\mu_{\mathbf{x}}) = \underset{\mu_{\mathbf{z}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{z}}})}{\text{arg min}} \, \mathscr{F}_1(\mu_{\mathbf{x}}, \mu_{\mathbf{z}}), \quad \text{Stage II:} \quad \mu_{\mathbf{x}}^* = \underset{\mu_{\mathbf{x}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{x}}})}{\text{arg min}} \, \mathscr{F}_2(\mu_{\mathbf{x}}, \mu_{\mathbf{z}}^*(\mu_{\mathbf{x}})).$$

Observations:

- 1. The partial Wasserstein gradients $\mu_x \mapsto F_1(\mu_x, \mu_z)$ and $\mu_x \mapsto F_2(\mu_x, \mu_z)$; $\mu_z \mapsto F_1(\mu_x, \mu_z)$ and $\mu_z \mapsto F_1(\mu_x, \mu_z)$ are simple.
 - 2. The nested Wasserstein gradient of $\mu_x \mapsto F_2(\mu_x, \mu_z^*(\mu_x))$ is nasty.

The bilevel optimization problem

$$\mu_{\mathbf{z}}^*(\mu_{\mathbf{x}}) = \underset{\mu_{\mathbf{z}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{z}}})}{\min} \mathscr{F}_{1}(\mu_{\mathbf{x}}, \mu_{\mathbf{z}}), \quad \mu_{\mathbf{x}}^* = \underset{\mu_{\mathbf{x}} \in \mathcal{P}(\mathbb{R}^{d_{\mathbf{x}}})}{\arg\min} \mathscr{F}_{2}(\mu_{\mathbf{x}}, \mu_{\mathbf{z}}^*(\mu_{\mathbf{x}})). \tag{Bilevel}$$

- A constrained optimization problem
 - Stage I problem re-casted as a constraint.

$$\min_{\mu_{\mathsf{X}},\mu_{\mathsf{Z}}} \mathscr{F}_2(\mu_{\mathsf{X}},\mu_{\mathsf{Z}}), \quad \mathscr{F}_1(\mu_{\mathsf{X}},\mu_{\mathsf{Z}}) - \mathscr{F}_1(\mu_{\mathsf{X}},\mu_{\mathsf{Z}}^*(\mu_{\mathsf{X}})) \leq \varepsilon. \tag{ε-constrained}$$

A Lagrangian optimization problem

$$(\mu_{\mathsf{x},\lambda}^*,\mu_{\mathsf{z},\lambda}^*) = \arg\min_{\mu_{\mathsf{x}},\mu_{\mathsf{z}}} \mathscr{L}_{\lambda}(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) := \mathscr{F}_2(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) + \frac{\lambda}{\lambda} (\mathscr{F}_1(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) - \mathscr{F}_1(\mu_{\mathsf{x}},\mu_{\mathsf{z}}^*(\mu_{\mathsf{x}}))) \,.$$
 (\$\lambda\$-penalty)

- When $\lambda = +\infty$, it recovers the bilevel optimization problem.
- When $\lambda < +\infty$, one needs to take into account an additional approximation error.

Main challenge:

$$\begin{split} (\mu_{x,\lambda}^*, \mu_{z,\lambda}^*) &= \arg\min_{\mu_x,\mu_z} \mathscr{L}_{\lambda}(\mu_x, \mu_z) \\ &= \arg\min_{\mu_x,\mu_z} \mathscr{F}_2(\mu_x, \mu_z) + \frac{\lambda}{\lambda} (\mathscr{F}_1(\mu_x, \mu_z) - \mathscr{F}_1(\mu_x, \mu_z^*(\mu_x))) \end{split}$$

Proposition 1 (Wasserstein gradient of \mathscr{L}_{λ})

Let $\mu_z^*(\mu_x) = \arg\min_{\mu_z} \mathscr{F}_1(\mu_x, \mu_z)$ be the solution to the stage I optimization. Then,

$$\nabla_1 \mathcal{L}_{\lambda}(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}) = \nabla_1 \mathcal{F}_2(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}) + \lambda \nabla_1 \mathcal{F}_1(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}) - \lambda \nabla_1 \mathcal{F}_1(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}^*(\mu_{\mathsf{x}})),$$

$$\nabla_2 \mathcal{L}_{\lambda}(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}) = \nabla_2 \mathcal{F}_2(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}) + \lambda \nabla_2 \mathcal{F}_1(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}).$$

 ∇_1 (resp. ∇_2) denotes the Wasserstein gradient with the first (resp. second) argument.

- The Wasserstein gradient of the mapping $\mu_x \mapsto \mathscr{F}_1(\mu_x, \mu_z^*(\mu_x))$ only involves the partial derivative with the first argument (envelope theorem).
- We avoid the nasty Wasserstein gradient of $\mu_X \mapsto \mathscr{F}_2(\mu_X, \mu_z^*(\mu_X))$.

• Convexity of $\mathscr{L}_{\lambda}(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) = \mathscr{F}_{2}(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) + \lambda \left(\mathscr{F}_{1}(\mu_{\mathsf{x}},\mu_{\mathsf{z}}) - \mathscr{F}_{1}(\mu_{\mathsf{x}},\mu_{\mathsf{z}}^{*}(\mu_{\mathsf{x}}))\right).$

Observations:

- 1. The partial mapping $\mu_z \mapsto \mathscr{L}_{\lambda}(\mu_x, \mu_z)$ is convex, for any fixed $\mu_x \in \mathcal{P}_2(\mathbb{R}^{d_x})$.
- 2. The partial mapping $\mu_X \mapsto \mathscr{L}_{\lambda}(\mu_X, \mu_Z)$ is not convex, for any fixed $\mu_Z \in \mathcal{P}_2(\mathbb{R}^{d_X})$.
 - 3. The joint mapping $(\mu_x, \mu_z) \mapsto \mathscr{L}_{\lambda}(\mu_x, \mu_z)$ is not convex.

Question: How to exploit this partial convexity $\mu_z \mapsto \mathscr{L}_{\lambda}(\mu_x, \mu_z)$?

- Innerloop: $\mu_z^*(\mu_x) = \arg\min_{\mu_z} \mathscr{F}_1(\mu_x, \mu_z)$, $\tilde{\mu}_z^*(\mu_x) = \arg\min_{\mu_z} \mathscr{L}_{\lambda}(\mu_x, \mu_z)$.
- Outerloop: $\mu_{x,\lambda}^* = \arg\min_{\mu_x} \mathscr{L}_{\lambda}(\mu_x, \tilde{\mu}_z^*(\mu_x), \mu_z^*(\mu_x)).$
- Noisy gradient descent!

Inner-loop algorithm

$$\begin{split} &\mu_{z}^{*}(\mu_{x}) = \arg\min_{\mu_{z}} \mathscr{F}_{1}(\mu_{x},\mu_{z}) = \arg\min_{\mu_{z}} F_{1}(\mu_{x},\mu_{z}) + \sigma_{1}\mathrm{Ent}(\mu_{z}), \\ &\tilde{\mu}_{z}^{*}(\mu_{x}) = \arg\min_{\mu_{z}} \mathscr{L}_{\lambda}(\mu_{x},\mu_{z}) = \arg\min_{\mu_{z}} F_{2}(\mu_{x},\mu_{z}) + \lambda F_{1}(\mu_{x},\mu_{z}) + \lambda \sigma_{1}\mathrm{Ent}(\mu_{z}). \end{split}$$

• Fast convergence due to partial convexity of $\mu_z \mapsto F_1(\mu_x, \mu_z)$ and $\mu_z \mapsto F_2(\mu_x, \mu_z) + \lambda F_1(\mu_x, \mu_z)$ for fixed μ_x .

Algorithm INNERLOOP(μ_x , T, α , β , λ , σ_1)

```
1: Initialize \mu_{\mathscr{Z},0} = \frac{1}{N_z} \sum_{j=1}^{N_z} \delta_{z_0^{(j)}} and \tilde{\mu}_{\mathscr{Z},0} = \frac{1}{N_z} \sum_{j=1}^{N_z} \delta_{\tilde{z}_0^{(j)}}.

2: for t = 0, \dots, T do

3: for i = 1, \dots, N_z do

4: z_{t+1}^{(i)} = z_t^{(i)} - \alpha \nabla_2 F_1(\mu_x, \mu_{\mathscr{Z},t})(z_t^{(i)}) + \sqrt{2\alpha\sigma_1} \, \xi_{z,t}^{(i)}.

5: \tilde{z}_{t+1}^{(i)} = \tilde{z}_t^{(i)} - \beta \nabla_2 F_2(\mu_x, \tilde{\mu}_{\mathscr{Z},t})(\tilde{z}_t^{(i)}) - \beta \lambda \nabla_2 F_1(\mu_x, \tilde{\mu}_{\mathscr{Z},t})(\tilde{z}_t^{(i)}) + \sqrt{2\beta\lambda\sigma_1} \, \tilde{\xi}_{z,t}^{(i)}.

6: end for

7: end for
```

Assumption 1 (Bounded and smooth neural networks)

There exists a universal positive constant R such that $\sup_{x \in \mathbb{R}^{d_x}, \mathbf{x} \in \mathcal{X}} |\Psi_{\mathbf{x}}(x)| \leq R$ and $\sup_{z \in \mathbb{R}^{d_z}, \mathbf{z} \in \mathcal{Z}} |\Psi_{\mathbf{z}}(z)| \leq R$. Also, $\sup_{x \in \mathbb{R}^{d_x}, \mathbf{x} \in \mathcal{X}} |\nabla_x \Psi_{\mathbf{x}}(x)| \leq R$ and $\sup_{z \in \mathbb{R}^{d_z}, \mathbf{z} \in \mathcal{Z}} |\nabla_z \Psi_{\mathbf{z}}(z)| \leq R$.

• It works for two-layer neural networks with tanh/ReLU plus smooth output clipping.

Assumption 2 (Bounded target)

There exists a universal constant M such that the target random variable $|Y| \leq M$ and $|h_{\circ}(X)| \leq M$ almost surely.

• Boundedness of |Y| can be relaxed to sub-Gaussian residual $Y - (Th_0)(Z)$.

Proposition 2 (Inner-loop convergence towards $\mu_z^*(\mu_x)$ and $\tilde{\mu}_z^*(\mu_x)$)

Suppose Assumption 1 and 2 hold. Given a fixed $\mu_x \in \mathcal{P}_2(\mathbb{R}^{d_x})$. Let $\mathscr{Z} = \{z^{(i)}\}_{i=1}^{N_z}$ and $\mathscr{Z} = \{\tilde{z}^{(i)}\}_{i=1}^{N_z}$ be the output of the inner-loop algorithm InnerLoop $(\mu_x, T, \alpha, \beta, \lambda, \sigma_1)$. Denote $\mu_z^{(N_z)}$ and $\tilde{\mu}_z^{(N_z)}$ as the joint distribution of these N_z particles \mathscr{Z} . Suppose the step size satisfy $\alpha \leq \frac{1}{\zeta_1}$ and $\beta \leq \frac{1}{\lambda \zeta_2}$. For any T > 0,

$$\frac{\sigma_1}{N_z} \mathrm{KL}\left(\mu_z^{(N_z)}, (\mu_z^*(\mu_x))^{\otimes N_z}\right) \leq \frac{R^2}{N_z} + \frac{\alpha^2 + \alpha \sigma_1 d_z}{C_{\mathrm{LSI},z} \sigma_1} + \mathcal{O}(\exp(-C_{\mathrm{LSI},z} \sigma_1 \alpha T))$$

$$\frac{\sigma_2}{N_z} \mathrm{KL}\left(\tilde{\mu}_z^{(N_z)}, (\tilde{\mu}_z^*(\mu_x))^{\otimes N_z}\right) \leq \frac{R^2}{N_z} + \frac{\beta^2 + \beta \sigma_1 d_z}{C_{\mathrm{LSI},z} \sigma_1} + \mathcal{O}(\exp(-C_{\mathrm{LSI},z} \sigma_1 \beta T)).$$

- $C_{\text{LSI},z} = \Theta(\frac{\zeta_1}{\sigma_1} \exp(-\frac{R^2}{\zeta_1 \sigma_1} \sqrt{d_z/\pi})).$
- Direct application of mean-field results.

Outer-loop algorithm

$$\mu_{\mathsf{x},\lambda}^* = \arg\min_{\mu_\mathsf{x}} \mathscr{L}_\lambda(\mu_\mathsf{x}, \tilde{\mu}_\mathsf{z}^*(\mu_\mathsf{x}), \mu_\mathsf{z}^*(\mu_\mathsf{x})) = \arg\min_{\mu_\mathsf{x}} \mathsf{L}_\lambda(\mu_\mathsf{x}, \tilde{\mu}_\mathsf{z}^*(\mu_\mathsf{x}), \mu_\mathsf{z}^*(\mu_\mathsf{x})) + \sigma_2 \mathrm{Ent}(\mu_\mathsf{x})$$

• Its Wasserstein gradient $\nabla L_{\lambda}(\mu_{x}, \tilde{\mu}_{z}^{*}(\mu_{x}))(x)$ equals (via envelope theorem)

$$\nabla_1 F_2(\mu_{\mathsf{x}}, \tilde{\mu}_{\mathsf{z}}^*(\mu_{\mathsf{x}}))(x) + \lambda (\nabla_1 \mathscr{F}_1(\mu_{\mathsf{x}}, \tilde{\mu}_{\mathsf{z}}^*(\mu_{\mathsf{x}}))(x) - \nabla_1 \mathscr{F}_1(\mu_{\mathsf{x}}, \mu_{\mathsf{z}}^*(\mu_{\mathsf{x}}))(x))$$

Algorithm OUTERLOOP: F^2 BMLD (Fully-first order Bilevel MFLD)

```
1: Initialize \mu_{\mathcal{X},0} = \frac{1}{N_x} \sum_{j=1}^{N_x} \delta_{x_0^{(j)}}.
```

2: **for** s = 0, ..., S **do** 3: $\tilde{\mu}_{\mathscr{X}, s}, \underline{\mu}_{\mathscr{X}, s} \leftarrow \text{INNERLOOP}(\mu_{\mathscr{X}, s}).$

3:
$$\mu_{\mathscr{Z},s}, \mu_{\mathscr{Z},s} \leftarrow \text{INNERLOOP}(\mu_{\mathscr{X},s})$$

4: **for** $i = 1, ..., N_r$ **do**

$$x_{s+1}^{(i)} = x_s^{(i)} - \gamma \left(\nabla_1 F_2(\mu_{\mathscr{X},s}, \tilde{\mu}_{\mathscr{Y},s})(x_s^{(i)}) + \lambda (\nabla_1 \mathscr{F}_1(\mu_{\mathscr{X},s}, \tilde{\mu}_{\mathscr{Y},s})(x_s^{(i)}) \right)$$
5:

$$-\nabla_1\mathscr{F}_1(\mu_{\mathscr{X},s},\mu_{\mathscr{Z},s})(x_s^{(i)})) + \sqrt{2\gamma\sigma_2}\xi_{x,s}^{(i)}.$$

6: end for

7: end for

<u>2</u>4 / 34

Algorithm ✓ **Theory** ?

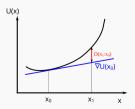
Question: How to prove convergence
$$\mu_{\mathscr{Z},S} = \frac{1}{N_x} \sum_{i=1}^{N_x} \delta_{x_S^{(i)}} \to \mu_{x,\lambda}^*$$
?

- The key is convexity!
- $\mu_x \mapsto L_{\lambda}(\mu_x, \tilde{\mu}_z^*(\mu_x), \mu_z^*(\mu_x))$ is only weakly convex.

Lemma (Lower-bound on the Bregman divergence of L_{λ})

Suppose Assumption 1 holds. Then, we have $B_{L_{\lambda}}(\mu_{x}, \mu'_{x}) \geq -\frac{R^{3}\lambda}{4\sigma_{1}} TV^{2}(\mu_{x}, \mu'_{x})$.

• L_{λ} is more convex as σ_1 increases yet less convex as λ increases.



Theorem 3 (Convergence bound)

Suppose Assumption 1 and 2 hold. Let $\mathfrak{c} > 0$ and assume that $\sigma_1 \sigma_2 \mathfrak{c} \ge 4R^3 \lambda$. Suppose the step size $\gamma \le \zeta_2^{-1}$. Given a fixed $\lambda > 0$, for any number of iterations $S \in \mathbb{N}^+$, we have

$$\mathcal{H}(S) \lesssim \exp\left(-\sigma_2 C_{\mathrm{LSI},x} S \gamma\right) + \frac{\lambda R^2}{\sigma_1 N_x} + \frac{\lambda^2 \left(\sqrt{\frac{\Re \mathfrak{L}}{N_z}} + \sqrt{\frac{\Re \mathfrak{L}}{N_z}}\right)}{\sigma_2 C_{\mathrm{LSI},x}} + \frac{\lambda^2 \left(\gamma^2 + \gamma \sigma_2 d_x\right)}{\sigma_2 C_{\mathrm{LSI},x}} + \mathfrak{c}^2 C_{\mathrm{LSI},x}.$$

- RL and RL represents the inner-loop optimization error.
- c is a slack parameter arising from the weak convexity of L_{λ} .
- Define $h_{*,\lambda}(\mathbf{x}) = \int \Psi_{\mathbf{x}}(x) d\mu_{x,\lambda}^*(x)$ the global optimum mean field network. Define $\hat{h}_S(\mathbf{x}) = \frac{1}{N_x} \sum_{i=1}^{N_x} \Psi_{\mathbf{x}}(x_S^{(i)})$ where $\{x_S^{(i)}\}_{i=1}^{N_x}$ are the output of F^2 BMLD.

$$\forall \mathbf{x} \in \mathcal{X}, \quad \mathbb{E}\left[\left(\hat{h}_{S}(\mathbf{x}) - h_{*,\lambda}(\mathbf{x})\right)^{2}\right] \leq \sqrt{\sigma_{2}^{-1}\mathcal{H}(S) + \frac{\lambda \mathfrak{c}}{\sigma_{1}\sigma_{2}} + \frac{\lambda}{N_{x}\sigma_{1}\sigma_{2}}} + \frac{1}{N_{x}}.$$

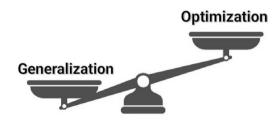
• The optimization bound wants small λ .

Optimization theory:

We have proved that F^2BMLD can indeed find the global optimum solution $h_{*,\lambda}$.

Statistical theory:

How well does $h_{*,\lambda}$ generalize towards h_{\circ} when given finite i.i.d samples over $(\mathbf{x},\mathbf{z},\mathbf{y})$?



• Given m i.i.d samples $\{\mathbf{z}_i, \mathbf{x}_i\}_{i=1}^m \sim P_{ZX}$ in stage I and n i.i.d samples $\{\mathbf{z}_i, \mathbf{y}_i\}_{i=1}^n \sim P_{ZY}$ in stage II:

$$\mathcal{F}_{1}(\mu_{x},\mu_{z}) = \sum_{i=1}^{m} \frac{1}{2m} \left(\int \Psi(\mathbf{z}_{i},z) d\mu_{z} - \int \Psi(\mathbf{x}_{i},x) d\mu_{x} \right)^{2} + \frac{\zeta_{1}}{2} \mathbb{E}_{\mu_{z}}[\|z\|^{2}] + \sigma_{1} \mathrm{Ent}(\mu_{z}),$$

$$\mathcal{F}_{2}(\mu_{x},\mu_{z}) = \sum_{i=1}^{n} \frac{1}{2n} \left(\int \Psi(\mathbf{z}_{i},z) d\mu_{z}^{*}(\mu_{x}) - \mathbf{y}_{i} \right)^{2} + \frac{\zeta_{2}}{2} \mathbb{E}_{\mu_{x}}[\|x\|^{2}] + \sigma_{2} \mathrm{Ent}(\mu_{x}).$$

• Recall that $T: L^2(P_X) \to L^2(P_Z)$ defined as $T: f \mapsto \mathbb{E}[f(X) \mid Z]$ and NPIV:

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h_{\circ}(X) \mid Z]. \tag{NPIV}$$

Assumption 3 (Stage II well-specifiedness)

 h_{\circ} belongs to a KL restricted Barron space $\mathcal{B}_{M_{x}} := \{ \int \Psi(\cdot, x) \mathrm{d}\mu_{x}(x) \mid \mathrm{KL}(\mu_{x}, \nu_{x}) \leq M_{x} \}$, where $\nu_{x} = \mathcal{N}(0, \zeta_{2}\sigma_{2}^{-1}\mathrm{Id}_{d_{x}})$. That is, there exists a measure $\mu_{x}^{\circ} \in \mathcal{B}_{M_{x}}$ such that $h_{\circ}(\cdot) = \int \Psi(\cdot, x) \mathrm{d}\mu_{x}^{\circ}$.

Assumption 4 (Stage I well-specifiedness)

The conditional expectation $T[\int \Psi(\cdot,x) \mathrm{d}\mu_x(x)](\mathbf{z}) = \int \mathbb{E}[\Psi(X,x) \mid Z = \mathbf{z}] \, \mathrm{d}\mu_x(x)$ belongs to a KL restricted Barron space $\mathcal{B}_{M_z} := \{\int \Psi(\cdot,z) \mathrm{d}\mu_z(z) \mid \mathrm{KL}(\mu_z,\nu_z) \leq M_z\}$, where $\nu_z = \mathcal{N}(0,\zeta_1\sigma_1^{-1}\mathrm{Id}_{d_z})$. That is, there exists a measure $\mu_z^\circ(\mu_x) \in \mathcal{B}_{M_z}$ such that $T[\int \Psi(\cdot,x) \mathrm{d}\mu_x(x)](\mathbf{z}) = \int \Psi(\cdot,z) \mathrm{d}\mu_z^\circ(\mu_x)$.

• M_x , M_z are universal constants that control the size of the Barron spaces.

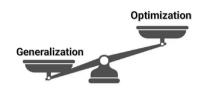
Theorem 4 (Generalization bound)

Suppose Assumption 1,2,3,4 hold. For $\lambda > 0$, let $\mu_{x,\lambda}^*$ be the optimal solution to the Lagrangian problem and $h_{*,\lambda}(\mathbf{x}) = \int \Psi(\mathbf{x},x) \, \mathrm{d}\mu_{x,\lambda}^*(x)$ be its associated mean field neural network. Then, with $P_{\mathbf{x},\mathbf{y}}^{\otimes (m+n)}$ probability at least $1-8\delta$,

$$\mathbb{E}_{P_Z}\left[\left((Th_{*,\lambda})(Z)-(Th_{\circ})(Z)\right)^2\right] \lesssim \sigma_2 M_X + \sigma_1 M_Z + \frac{R^2(R+M)^2}{\sigma_1 \lambda} + \sqrt{\frac{M_Z + \frac{1}{\sigma_1} + \log(\delta^{-1})}{m}} + \sqrt{\frac{M_X + \frac{1}{\sigma_2} + \log(\delta^{-1})}{n}}.$$

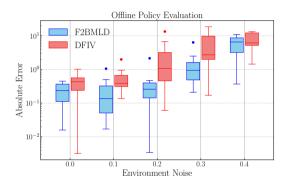
- The generalization bound wants large λ so the Lagrangian problem is more faithful to the original bilevel optimization problem.
- $\mathcal{O}(m^{-\frac{1}{2}})$ and $\mathcal{O}(n^{-\frac{1}{2}})$ arise from Rademacher complexity bound.
 - Two-stage regression so we need both $m, n \to \infty$.

Mean-field perspective of 2SLS: Optimization and Generalization



- Trade-off on λ , σ_1 , σ_2 in terms of optimization and generalization.
- Optimization bound: $\mathbb{E}\left[\left(\hat{h}_{S}(\mathbf{x})-h_{*,\lambda}(\mathbf{x})\right)^{2}\right]=\mathcal{O}(\lambda^{2}+\sigma_{1}^{-1}+\sigma_{2}^{-1}).$
- Generalization bound: $\mathbb{E}_{P_Z}\left[\left((Th_{*,\lambda})(Z)-(Th_\circ)(Z)\right)^2\right]=\mathcal{O}(\lambda^{-1}+\sigma_1+\sigma_2).$
- Unfortunately, there does not exist a pair of $\lambda, \sigma_1, \sigma_2$ such that both errors vanish.

Experiments: Offline RL on Cartpole



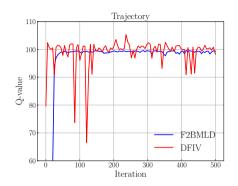


Figure: **Left:** Comparison of DFIV and F2BMLD in terms of target policy value. **Right:** Comparison of DFIV and F2BMLD training trajectories.

- λ is selected from a set $\{0.1, 1.0, 10.0\}$.
- More stable trajectory because of fully-first order gradient in optimization.

About Me

- Zonghao Chen
- 4th year PhD Student at University College London (UCL)
 - Foundational AI Centre
 - Gatsby Computational Neuroscience Unit
- Graduated from Tsinghua University in 2022
 - Department of EE
- Kernel (nonparametric) methods, causal inference, statistical learning theory