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Background

® Nonparametric regression is used everywhere in statistics.

® Kernel based estimators, (deep) neural networks, nearest neighbours, etc.
® Regression fails when ....

® there exist confounding that affects both the input and the output.

® A classical example: does smoking cause lung cancer?
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How to prove a direct relation under (unobserved) confounding? J
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Background: Causal Inference and Instrumental Variable

® The causal effect of smoking X on the risk of lung cancer Y.
® Unobserved confounding e: gene, occupation, childhood.
Y = ho(X)+e€, wheree [ X.

® h, is the target of interest.

® |n this talk, we focus on additive confounder.

® Regression always outputs a biased estimate E[Y | X] = ho(X) + # ho(X).
® Instrumental variable Z that affects Y only through X: price of the cigarette.

el Z
e Conditioning both sides on Z
E[Y | Z] = E[ho(X) | Z]. (NPIV)

® Nonparametric way of estimating hs.
® Given i.i.d. samples {x;,z;,yi}";.
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Background: NPIV versus NPR

® Nonparametric regression (NPR): Y = ho(X) + € with ¢ L X.
® Conditioning both sides on
E[Y | X] = ho(X). (NPR)

® Target h, = argmin, Eyx[(Y — h(X))?].
® | east squares estimator

n

1
t= in=> (ho(x;) — yi)? i Yitie1 ~ Pxvy.
0 arg mem n i:1( Q(X) y) ) {X ?y}lfl Xy

® hy is a neural network parameterized by 6.

® Nonparametric instrumental variable regression (NPIV): Y = ho(X) + € with ¢ £ X
bute L Z.

® Conditioning both sides on
E[Y | Z] = E[h(X) | Z]. (NPIV)

Problem: How to estimate h, given {x;, y;,z;}"_; ~ Pxyz? |
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Background: Offline reinforcement learning

® s: state, a: action, r: reward, y: discount factor.

® Q(s,a) =E[> ;2o7're | so =s,ap = a] denotes the expected long-term return when

taking action a in state s.
Bellman equation:

E[r | s,a] = Q(s,a) — YE[Q(s', ) | s, a].

The Bellman equation shars the same structure as NPIV:

State
SI

E[Y | 2] = E[h,(X) | Z].

Correspondence: Y — r, Z — (s,a), X — (s, d).

%
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Background: Proximal causal inference

® X treatment, Y outcome, W outcome proxy, Z treatment proxy

e Conditional moment equation:
E[Y | Z,X] = E[h(W,X) | Z,X].

® Bridge function h,
® Correspondence with NPIV

E[Y | Z] = E[h(X) | Z]

* Y Y, Z(Z,X), X = (W, X).
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How to solve NPIV

Question: How to find hs in the NPIV equation E[Y | Z] = E[ho(X) | Z]? J
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Background: NPIV and 2SLS

e Define T : L2(Px) — L?(Pz) as the unknown conditional expectation operator
defined by (T7)(Z) = E[f(X) | Z].

E[Y | Z] = E[ho(X) | Z] =: (Tho)(2). (NPIV)

® Target h, = argmin, Eyz[(Y — (Th)(Z2))?].

® T is unknown yet it is a conditional expectation and hence can be learned via regression.

® Two-stage least squares (2SLS)

® hy, and hg, are two neural networks.
m

* _ . l AN )2 L um
0;(0x) = arg n;ln m Zl (ho,(zi) — he (xi))", {xi,zi}iZ1 ~ Pxz
= (2SLS)

n

1 Z
Ox = are ne]?ln n ,'71( ox00)(2i) —vi)*, Az yitic zy

® hgro,)(zi) = E[hy (X) | Z = 2] = (The,)(z/) -
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Target: Optimization and Generalization

® Two-stage least squares (2SLS)
® Both hy, and hg, are neural networks.

% .1 Z 2 m
Stage | 0%(0x) = arg n;ln p. ; (ho,(z;) — ho,(xi))", {xi,zi}1 ~ Pxz
Lo = (2SLS)
. * N = . N\ — ve)2 Lyl
Stage Il: 0 = arg n;in n Z(hGZ(Gx)(Z/) YI) ) {ZH.yI}I:]. Pzy.

i=1

optimum 63,037 If it does, what is the iteration complexity?

rA &

Bilevel optimization theory: Does gradient based algorithm can actually find the globaIJ

z) VX!

Statistical theory: Given the global optimal 07, 05, is hy: a consistent estimator of h,? If
it does, what is the sample complexity? ‘
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Mean-field neural networks
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Background: Mean-field two-layer neural networks

e Consider neural networks with a single hidden layer of size N:
o 7 =[xM . .| xM] € (R%)V are the network parameters and x is the network input

N
h(x, 2) = % > (x,x7)
i=1

® Here, W(x, x) = wpa(w; x + b) with parameters x = (w1, wa, b) and a being an
activation function.
e As the empirical distribution 4 Z,N:l Oy — pas N — oo:

) = [ W0xx)du(x) = Exe [W(x, X))

® So called "mean-field neural network".

Question: What is the purpose of considering the mean-field limit? J
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Background: Mean-field perspective of two-layer neural networks

® Consider the squared loss with ¢>-norm regularization
F(p) = lg Ex, [W(x, X)] — y)2] + °E X||?
n) = 5 (x,y)~p [( XN;L[ (X, )] y) ] + 2 XN#[” ” ]7

® pis a data distribution, e.g. p= 13", O(xi,yi)-

® F is linear convex in u: for any probability measures u,v € P,
F(Ou+ (1 —=9)) <I9F(u)+ (1 —-9)F(v), VIe€(0,1).
® Optimization problem in P: min F(u).

® Wasserstein gradient flow!

12/37



Background: Mean-field perspective of two-layer neural networks

T.P2(R) C L (p)
p, ®

Pa (Rd)

Definition (Wasserstein gradient)

Let G : Po(RY) — R be a regular functional. The Wasserstein gradient of G evaluated at
€ Po(R?) is the unique function VG(u) : R? — RY, s.t. for any T € T, P2(RY),

m <10 (1 +€T)n) = Gl = [ IV T0) du(x) = (VG Ty

li
e—0

® Wasserstein gradient of F at 1 € P evaluated at x € RY.
V() (%) = Exy)mp [([Ex~pu[V(x, X)] = y)VW(x, x)] + Cx.
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Background: Mean-field perspective of two-layer neural networks

® Wasserstein gradient of F at i € P evaluated at x € RY.
V() (%) = Ex,y)mp [(Ex~n[V(x, X)] = y)VV(x, x)] + Cx.

® Wasserstein gradient of F at g = 3 Ls » evaluated at x(1) € RY,

le

i 1 i i i
VF(pa) (<) = (,\, _E;w(x,% ) - y) VW (x, x) | + ¢x)
e Euclidean gradient of the loss
L) = FBpayyep | (G D WO x) =y 2] + 53 SO,
V\U(X,X(i)) C i
Vo L(Z) = Exyymp (NZ\UXX )N +NX()

® The Wasserstein gradient descent x(ﬁl = x{ —yVF(ua, s)(xs( )) coincides with the

Euclidean gradient descent xs(+)1 =x{) - YV, i L(Z5) with a rescaled learning rate!
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Background: Mean-field perspective of two-layer neural networks

® At iteration s € {0,...,S5} and for any i € {1,..., N}:

S(_gl—Xs()—’yVFﬂf)Xs +\/ fs.

X

. {5§")},’.V:1 are N i.i.d samples from d dimensional unit Gaussian.

® Define an entropic regularized objective .7 (u) = F(p) + oEnt(u).
* Ent(p) = [ log p(x)p(x)dx.
° N0|sy gradlent descent is Wasserstein gradient descent of .%#

® The global optimum x* := argmin,, % ().

Question: Does noisy gradient descent can actually find the wrIf it
does, what is the iteration complexity?

Assumption (Bounded and smooth neural networks)

There exists a universal positive constant R such that sup,cga. yex [Vx(x)| < R and
SUPxeRdx xex [VxWx(x)| < R.
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Background: Mean-field perspective of two-layer neural networks

® Define h,(x) = [ W(x, x)dpu.(x) the output of the optimal mean-field neural network.

e Define hs(x) = % Zf\’zl lll(x,xg)) the output of a trained neural network at time S.
® For any input x € &,

» 2 2+ ~yod
E (hs(x) - h*(x)> < OoNY 4+ o1 4+ O(exp(—CLuioS)).
N—— Crsio ~~ 4
finite particle error —_— optimization error
time discretization error

® Expectation is taken over the randomness in initialization and noise at each iteration.
® (i1 =0O(0 texp(—¢ o~ 1Vd)) describes the 'difficulty’ of learning ..
® |t reflects the
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Mean-field neural networks in 2SLS




Mean-field perspective of 2SLS

e Two-stage least squares (2SLS)

Stage I: Z*(Z) = argmin EIE?,) [(h(z, Z) — h(x, 3&”))2] ,
Ze(R9z)Nx (1)
Stage I 2" = argmin 1I[-Zp [(h(z, ZN(Z)) - y)ﬂ .
2 €(Rox )Nz

h(x, Z2°) = N% SN W (xD) where 27 = [x(M), ... x(N)] e (R%)Mx are the network
parameters and x is the network input.

h(z, ) = N% Z,N:zl W, (z2(0) where 2 =[z(D), ..., z(N)] € (R%)N= are the network
parameters and z is the network input.

p is the data distribution over (x,z,y).
A shorthand notation: W, (x()) = W(x, x(0) and W,(z()) = W(z, z()).
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Mean-field perspective of 2SLS

® Mean field neural networks f]RdX Wy (x)d ) and fRdz 2(2)dpz(z) where piy, p, are
the mean-field limit of the hidden layer.

® /5> and entropic regularizations for both stages:
o1
Stage I: pi; (1) = argmin JE[(f Wdpiz — [Wxdr.)® 1+ E;IZ[HZII | + o1Ent(p2),
HZEP(RdZ)
.1 *
Stage Il: pf= argmin ~E,[(f V,dui(/) —y)? ]+ IE [IIx]1] + o2Ent(/..).
,LLXG'P(RdX)
(Bi-MFLD)

® A bilevel optimization problem over P(R%) and P(R%).

® Popular methods like explicit gradient (autodiff) and implicit gradient (high-order

gradient) do not work.
® For fixed py, Stage | u%(px) can be solved via standard mean field Langevin dynamics.
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Mean-field perspective of 2SLS

e Some notation:

(s 12) = 5B l( Ve iz — W dux) |+ 2B, {121

(e 12) = SEI( Ve dpe — ]+ S, .

® (N)m Nz) = FI(NXu Nz) + UlEnt(Nz) and 5%2(/,1,)(, /~Lz) = F2(:LLX7 /~Lz) + UzEHt(LLX).
® Bilevel optimization problem is

Stage |1 py(ux) = argmin Z1(pux, pz), Stage ll:  pl = argmin Fo(ux, 1y (px))-
pz€P(R%) Lix EP(Rx)

Observations:
1. The partial Wasserstein gradients jx — F1(pix, itz) and gy — Fo(px, p2);

pz — F1(px, piz) and pz — F1(px, pz) are simple.
2. The nested Wasserstein gradient of pux — Fo(px, pi(1x)) is nasty.
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Mean-field perspective of 2SLS: Lagrangian formulation

® The bilevel optimization problem

1y(px) = argmin F1(pux, pz),  py = argmin Fo(p, 15 (4x))- (Bilevel)
pzEP(R%) px€P(R)
o A optimization problem

® Stage | problem re-casted as a constraint.

min Fo(x, pz),  F1(psx, pz) — F1(ix, e (px)) < €. (e-constrained)
x5z

® A Lagrangian optimization problem

(Hxx M) = arg pig O\ prz) = Fofixs piz) + N (Fr(axs z) — F1 (e, 15 (1x))) -

(A-penalty)

® When A = 400, it recovers the bilevel optimization problem.
® When A < 400, one needs to take into account an additional approximation error.
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Mean-field perspective of 2SLS: Lagrangian formulation

® Main challenge:

(e Hz,2) = arg min 25 (ux, iz)

= arg}gﬂily T, piz) + A (F1 (s piz) — Frpess 13 (11x)))

Proposition 1 (Wasserstein gradient of %))

Let 1i3(px) = arg min,, Z1(jux, 1) be the solution to the stage | optimization. Then,

V1L (px, piz) = V1Fo(pix, pz) + AV 1F1 (i, pz) — AV 171 (i, pr7(x)),
V2$)\(/Lx’ ,uz) = V2<g.2(,ulxa ,uz) A >\V2<?1(/I/Xa #z)-

V1 (resp. V) denotes the Wasserstein gradient with the first (resp. second) argument.

® The Wasserstein gradient of the mapping px — %1 (ux, pi(1x)) only involves the
partial derivative with the first argument (envelope theorem).

® We avoid the nasty Wasserstein gradient of pix — Zo(fix, i (fix))- 237



Mean-field perspective of 2SLS: Lagrangian formulation

® Convexity of Ly\(pix, tz) = F2(pix, piz) + A F1 (s p1z) — F1(pixs 13 (11x)))-

Observations:
1. The partial mapping s, — 2 (1ix, 112) is convex, for any fixed pi € Po(R%).
2. The partial mapping pix — Z\(jix, f12) is not convex, for any fixed u, € Pp(R%).
3. The joint mapping (px, itz) — Z\(px, f12) is not convex.

Question: How to exploit this partial convexity p, — (L, piz)? J

Innerloop: 11} (4ix) = arg min,,, F1(px, pz), fiz(1x) = arg ming, A (pix; pz)-
Outerloop: p1}; y = argmin,, 2 (i, 13 (10x), 13 (x))-
Noisy gradient descent!
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Mean-field perspective of 2SLS: Lagrangian formulation

® |nner-loop algorithm
(1) = argmin F(yie, 1) = arg min Fa(sie 1) + o1 Ent (1),
fiz(jix) = argmin Z3(jix, pz) = argmin Fa(pix, p1z) + AF1(pix; p12) + Aor Ent(pz).

® Fast convergence due to partial convexity of p, — Fi(ux, 1z) and
oz = Fa i, prz) + AF1 (s, prz) for fixed puy.

Algorithm INNERLOOP(uy, T, a, 8, A, 01)

. T 1 N, ) ~
1: Initialize pa o = A 21 52[()]) and figo = N 210, 20
2: fort=0,...,T do

3 fori=1,...,N, do

4 20, = 20~ oV ) (27) + 207 €0)

5: 20, = 20 — VP fir o) H) — NV (1 fir )E) 4+ ETRT &,
6 end for

7: end for
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Mean-field perspective of 2SLS: Lagrangian formulation

Assumption 1 (Bounded and smooth neural networks)

There exists a universal positive constant R such that sup,cge. xex [Vx(x)| < R and
SUP,cRdz ez |V2(2)| < R. Also, sup,crd xex |Vx¥Wx(x)| < R and
SUPzcRdz zez [V V,(z)| < R.

e It works for two-layer neural networks with tanh/ReLU plus smooth output clipping.

Assumption 2 (Bounded target)

There exists a universal constant M such that the target random variable |Y| < M and
|ho(X)| < M almost surely.

® Boundedness of | Y| can be relaxed to sub-Gaussian residual Y — (Th,)(Z).
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Mean-field perspective of 2SLS: Lagrangian formulation

Proposition 2 (Inner-loop convergence towards 1%(1x) and fif(ix))

Suppose Assumption 1 and 2 hold. Given a fixed i, € Po(R%). Let 2 = {z(1) } =, and
= {30 } be the output of the inner-loop algorithm INNERLOOP (uyx, T, o, 3, A,
01 ) Denote ug =) and ,ug 2) as the jomt distribution of these N, particles 2. Suppose

the step size satisfy o < —1 and 3 < 5z . Forany T >0,
2 2

o1 (N;) " N, R a“ + aod,
fKL< z 7, X Z) € —f———— — (1812 T
m pz s (z(px)) N T Cslion + O(exp(—=Crs1201aT))
o 5 " R? 24 Boid,
T2, (5, (7)) < -+ P BN | (G 21 BT)).
Nz Nz CI,SIAZUI

o Cisiz = O(5 exp(— & \/d:/m)).

® Direct application of mean-field results.
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Mean-field perspective of 2SLS: Lagrangian formulation

e Quter-loop algorithm
My = arg min Doy 12 (1), ) =arg min LaQpases 2 (12), ) + o2Ent(ux)
e |ts Wasserstein gradient VL) (ux, fi3(1x))(x) equals (via envelope theorem)
Vi Fa(pes fiz (1)) (%) + MV 171 (i, iz (1)) (%) = V11 (o, 11z (1)) (%))

Algorithm OUTERLOOP: FZBMLD (Fully-first order Bilevel MFLD)

1: Initialize pg o = KT’ 2.0 R
2: fors=0,...,5do
3: fiz s, Lz s < INNERLOOP(1 g 5).

4: fori=1,...,N, do
s(-zl = X( ) (Vle(M%,sa ﬁfx,s)(xs(i)) + )\(Vlfl(ll%,s, fiz s)(x7)

5:

~ViFi(par s, e s) ) + V/2702€L
6: end for
7: end for
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Algorithm v Theory ?
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Mean-field perspective of 2SLS: Lagrangian formulation

. Nx
Question: How to prove convergence iy s = N% i 5X§,-) = M n! J

® The key is convexity!
® fise > Ly(pise, i3 (px), i (1ax)) is only weakly convex.

Lemma (Lower-bound on the Bregman divergence of L))

Suppose Assumption 1 holds. Then, we have By, (pix, fty) > —@TVz(ux,u;).

401

® [, is more convex as oy increases yet less convex as A increases.

U(x)

29 /37



Mean-field perspective of 2SLS: Lagrangian formulation

Theorem 3 (Convergence bound )

Suppose Assumption 1 and 2 hold. Let ¢ > 0 and assume that . Suppose
the step size v < (2_1. Given a fixed A\ > 0, for any number of iterations S € N*, we have

( ;v;"" R‘) oo dy
H(S) S exp (02 CusinSy) + 28 +2 e + 2 Crsix-

o1 Ny + 02 CLs1, X 02 CLSI,x

AL and A represents the inner-loop optimization error.
® ( is a slack parameter arising from the weak convexity of Lj.
Define h. x(x) = [ Wx(x) dpx \(x) the global optimum mean field network. Define

hs(x) = N% ZlNle \UX(X_(;)) where {xg)},{vle are the output of F2BMLD.

AcC n A i
o109 Nyoior N,

Vxe X, E [(ﬁs(x) — hm(x))z] < \/0—217-[(5) +

The optimization bound wants small A.
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Mean-field perspective of 2SLS: Generalization

Optimization theory:
We have proved that F°BMLD can indeed find the global optimum solution hy x- ’

Statistical theory:
How well does h,. ) generalize towards h, when given finite i.i.d samples over (x,z,y)? ’

Optimization

Generalization
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Mean-field perspective of 2SLS: Generalization

® Given m i.i.d samples {zj,x;}™; ~ Pzx in stage | and n i.i.d samples
{zj,yi}!_, ~ Pzy in stage Il:

S!

2B 021 + o1 Ent(s2),

Fapix, p1z) = (S Y(zi, 2)dpz — [ W(xi, x)dpu)? +

1 Cz
2 (fxs 112) Z% (/ W(zi, z)dui(ux) — yi)* + 2EMX[HXH ] + o2Ent(pux).

i=1
® Recall that T : L?(Px) — L?(Pz) defined as T : f — E[f(X) | Z] and NPIV:

E[Y | Z] = E[ho(X) | Z]. (NPIV)
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Mean-field perspective of 2SLS: Generalization

Assumption 3 (Stage Il well-specifiedness)

he belongs to a KL restricted Barron space By, = {[ V(-, x)dux(x) | KL(ux, vx) < My},
where vy, = N'(0,(a05 H1dg,). That is, there exists a measure 1 € By, such that
ho(-) = JW(:, x)dpis.

Assumption 4 (Stage | well-specifiedness)

The conditional expectation T[[ W(-, x)dux(x)](z) = [E[WV(X, x) | Z = z] dux(x)
belongs to a KL restricted Barron space By, := {[ V(-, z)duz(z) | KL(uz,v,) < M.},
where v, = N'(0, (107 1dy,). That is, there exists a measure ;i2(j1,) € By, such that

TSV x)dpx(X)](2) = [ (-, 2)dps ()

® M,, M, are universal constants that control the of the Barron spaces.
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Mean-field perspective of 2SLS: Generalization

Theorem 4 (Generalization bound)

Suppose Assumption 1,2,3,4 hold. For X > 0, let i} \ be the optimal solution to the
Lagrangian problem and h, \(x) = [ W(x, x) du}, ,(x) be its associated mean field neural

network. Then, with P§§¢+") probability at least 1 — 84,

R%(R + M)?

Ee, |((Th2)2) = (Th)(2))| S oabc+ oame + L

+\/Mz—i-gll+|og(5_1)+\/MX—F(}Q—HOg((S—l).

m n

® The generalization bound wants large A\ so the Lagrangian problem is more faithful
to the original bilevel optimization problem.
1 1
¢ O(m~2) and O(n™2) arise from Rademacher complexity bound.

® Two-stage regression so we need both m, n — co.
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Mean-field perspective of 2SLS: Optimization and Generalization

Optimization

Generalization
—_—
—

Trade-off on A, 01,02 in terms of optimization and generalization.

A 2
Optimization bound: E [(hs(x) - h*7>\(x)) ] =0\ +o;t+arh).

Generalization bound: Ep, [((Thm)(Z) - (Tho)(Z))z] OO 4o+ 00).

Unfortunately, there does not exist a pair of A, 01,02 such that both errors vanish.
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Experiments: Offline RL on Cartpole

Trajectory

Offline Policy Evaluation o
10th 3 F2BMLD .
8 DrIvV * %] 100
100 %
90
80

107! ? 3
70 —— F2BMLD

1072
— DFIV

Q-value

Absolute Error

02 03 04 079 100 200 300 10 500

0.0 0.1
[teration

Environment Noise

Figure: Left: Comparison of DFIV and F2BMLD in terms of target policy value. Right: Comparison of
DFIV and F2BMLD training trajectories.

® )\ is selected from a set {0.1,1.0,10.0}.

® More stable trajectory because of fully-first order gradient in optimization.
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