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Background

• Nonparametric regression is used everywhere in statistics.
• Kernel based estimators, (deep) neural networks, nearest neighbours, etc.

• Regression fails when ....
• there exist confounding that affects both the input and the output.
• A classical example: does smoking cause lung cancer?

How to prove a direct relation under (unobserved) confounding?
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Background: Causal Inference and Instrumental Variable

• The causal effect of smoking X on the risk of lung cancer Y .
• Unobserved confounding ϵ: gene, occupation, childhood.

Y = h◦(X ) + ϵ, where ϵ ̸⊥ X .

• h◦ is the target of interest.
• In this talk, we focus on additive confounder.
• Regression always outputs a biased estimate E[Y | X ] = h◦(X ) + E[ϵ | X ] ̸= h◦(X ).

• Instrumental variable Z that affects Y only through X : price of the cigarette.

ϵ ⊥ Z

• Conditioning both sides on Z

E[Y | Z ] = E[h◦(X ) | Z ]. (NPIV)

• Nonparametric way of estimating h◦.
• Given i.i.d. samples {xi , zi , yi}ni=1.
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Background: NPIV versus NPR

• Nonparametric regression (NPR): Y = h◦(X ) + ϵ with ϵ ⊥ X .
• Conditioning both sides on X :

E[Y | X ] = h◦(X ). (NPR)

• Target h◦ = argminh EYX [(Y − h(X ))2].
• Least squares estimator

θ∗ = argmin
θ

1

n

n∑
i=1

(hθ(xi )− yi )
2, {xi , yi}ni=1 ∼ PXY .

• hθ is a neural network parameterized by θ.
• Nonparametric instrumental variable regression (NPIV): Y = h◦(X ) + ϵ with ϵ ̸⊥ X
but ϵ ⊥ Z .
• Conditioning both sides on Z :

E[Y | Z ] = E[h◦(X ) | Z ]. (NPIV)

Problem: How to estimate h◦ given {xi , yi , zi}ni=1 ∼ PXYZ?
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Background: Offline reinforcement learning

• s: state, a: action, r : reward, γ: discount factor.
• Q(s, a) = E[

∑∞
t=0 γ

trt | s0 = s, a0 = a] denotes the expected long-term return when
taking action a in state s.
• Bellman equation:

E[r | s, a] = Q(s, a)− γE[Q(s ′, a′) | s, a].
• The Bellman equation shars the same structure as NPIV:

E[Y | Z ] = E[h◦(X ) | Z ].
• Correspondence: Y → r , Z → (s, a), X → (s ′, a′).
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Background: Proximal causal inference

• X treatment, Y outcome, W outcome proxy, Z treatment proxy

• Conditional moment equation:

E[Y | Z ,X ] = E[h◦(W ,X ) | Z ,X ].

• Bridge function h◦
• Correspondence with NPIV

E[Y | Z ] = E[h◦(X ) | Z ]

• Y → Y , Z → (Z ,X ), X → (W ,X ).
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How to solve NPIV

Question: How to find h◦ in the NPIV equation E[Y | Z ] = E[h◦(X ) | Z ]?
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Background: NPIV and 2SLS

• Define T : L2(PX )→ L2(PZ ) as the unknown conditional expectation operator
defined by (Tf )(Z ) = E[f (X ) | Z ].

E[Y | Z ] = E[h◦(X ) | Z ] =: (Th◦)(Z ). (NPIV)

• Target h◦ = argminh EYZ [(Y − (Th)(Z ))2].
• T is unknown yet it is a conditional expectation and hence can be learned via regression.

• Two-stage least squares (2SLS)
• hθx and hθz are two neural networks.

θ∗z (θx) = argmin
θz

1

m

m∑
i=1

(hθz (zi )− hθx (xi ))
2 , {xi , zi}mi=1 ∼ PXZ

θ∗x = argmin
θx

1

n

n∑
i=1

(hθ∗z (θx )(zi )− yi )
2, {zi , yi}ni=1 ∼ PZY .

(2SLS)

• hθ∗z (θx )(zi ) ≈ E[hθx (X ) | Z = zi ] = (Thθx )(zi ) .
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Target: Optimization and Generalization

• Two-stage least squares (2SLS)
• Both hθx and hθz are neural networks.

Stage I: θ∗z (θx) = argmin
θz

1

m

m∑
i=1

(hθz (zi )− hθx (xi ))
2 , {xi , zi}mi=1 ∼ PXZ

Stage II: θ∗x = argmin
θx

1

n

n∑
i=1

(hθ∗z (θx )(zi )− yi )
2, {zi , yi}ni=1 ∼ PZY .

(2SLS)

Bilevel optimization theory: Does gradient based algorithm can actually find the global
optimum θ∗z , θ

∗
x? If it does, what is the iteration complexity?

Statistical theory: Given the global optimal θ∗z , θ
∗
x , is hθ∗x a consistent estimator of h◦? If

it does, what is the sample complexity?
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Mean-field neural networks



Background: Mean-field two-layer neural networks

• Consider neural networks with a single hidden layer of size N:
• X = [x (1), . . . , x (N)] ∈ (Rdx )N are the network parameters and x is the network input

h(x,X ) =
1

N

N∑
i=1

Ψ(x, x (i))

• Here, Ψ(x, x) = w2a(w
⊤
1 x+ b) with parameters x = (w1,w2, b) and a being an

activation function.

• As the empirical distribution 1
N

∑N
i=1 δx(i) → µ as N →∞:

hµ(x) =

∫
Ψ(x, x)dµ(x) = EX∼µ[Ψ(x,X )].

• So called ”mean-field neural network“.

Question: What is the purpose of considering the mean-field limit?

11 / 37



Background: Mean-field perspective of two-layer neural networks

• Consider the squared loss with ℓ2-norm regularization

F (µ) :=
1

2
E(x,y)∼ρ

[
(EX∼µ[Ψ(x,X )]− y)2

]
+

ζ

2
EX∼µ[∥X∥2],

• ρ is a data distribution, e.g. ρ = 1
n

∑n
i=1 δ(xi ,yi ).

• F is linear convex in µ: for any probability measures µ, ν ∈ P,

F (ϑµ+ (1− ϑ)ν) ≤ ϑF (µ) + (1− ϑ)F (ν), ∀ϑ ∈ (0, 1).

• Optimization problem in P: minF (µ).
• Wasserstein gradient flow!
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Background: Mean-field perspective of two-layer neural networks

Definition (Wasserstein gradient)

Let G : P2(Rd)→ R be a regular functional. The Wasserstein gradient of G evaluated at
µ ∈ P2(Rd) is the unique function ∇G(µ) : Rd → Rd , s.t. for any T ∈ TµP2(Rd),

lim
ϵ→0

1

ϵ
[G ((Id+ ϵT )#µ)− G(µ)] =

∫
[∇G(µ)](x)⊤T (x) dµ(x) = ⟨∇G,T ⟩L2(µ) .

• Wasserstein gradient of F at µ ∈ P evaluated at x ∈ Rd .

∇F (µ)(x) = E(x,y)∼ρ [(EX∼µ[Ψ(x,X )]− y)∇Ψ(x, x)] + ζx .
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Background: Mean-field perspective of two-layer neural networks

• Wasserstein gradient of F at µ ∈ P evaluated at x ∈ Rd .

∇F (µ)(x) = E(x,y)∼ρ [(EX∼µ[Ψ(x,X )]− y)∇Ψ(x, x)] + ζx .

• Wasserstein gradient of F at µX = 1
N

∑
i=1 δx(i) evaluated at x (i) ∈ Rd .

∇F (µX )(x (i)) = E(x,y)∼ρ

[(
1

N

N∑
i=1

Ψ(x, x (i))− y

)
∇Ψ(x, x (i))

]
+ ζx (i).

• Euclidean gradient of the loss

L(X ) := 1
2E(x,y)∼ρ

[
( 1
N

∑N
i=1Ψ(x, x (i))− y)2

]
+ ζ

2
1
N

∑N
i=1[∥x (i)∥2],.

∇x(i)L(X ) = E(x,y)∼ρ

[(
1

N

N∑
i=1

Ψ(x, x (i))− y

)
∇Ψ(x, x (i))

N

]
+

ζ

N
x (i)

• The Wasserstein gradient descent x
(i)
s+1 = x

(i)
s − γ∇F (µX ,s)(x

(i)
s ) coincides with the

Euclidean gradient descent x
(i)
s+1 = x

(i)
s − γ∇x (i)L(Xs) with a rescaled learning rate!
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Background: Mean-field perspective of two-layer neural networks

• At iteration s ∈ {0, . . . ,S} and for any i ∈ {1, . . . ,N}:

x
(i)
s+1 = x

(i)
s − γ∇F (µX )(x

(i)
s ) +

√
2σγ ξ

(i)
s .

• {ξ(i)s }Ni=1 are N i.i.d samples from d dimensional unit Gaussian.
• Define an entropic regularized objective F (µ) = F (µ) + σEnt(µ).

• Ent(µ) =
∫
log µ(x)µ(x)dx .

• Noisy gradient descent is Wasserstein gradient descent of F .

• The global optimum µ∗ := argminµ F (µ).

Question: Does noisy gradient descent can actually find the global optimum µ∗? If it
does, what is the iteration complexity?

Assumption (Bounded and smooth neural networks)

There exists a universal positive constant R such that supx∈Rdx ,x∈X |Ψx(x)| ≤ R and
supx∈Rdx ,x∈X |∇xΨx(x)| ≤ R.
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Background: Mean-field perspective of two-layer neural networks

• Define h∗(x) =
∫
Ψ(x, x)dµ∗(x) the output of the optimal mean-field neural network.

• Define ĥS(x) =
1
N

∑N
i=1Ψ(x, x

(i)
S ) the output of a trained neural network at time S .

• For any input x ∈ X ,

E
[(

ĥS(x)− h∗(x)
)2]
≤ O(N−1)︸ ︷︷ ︸

finite particle error

+ O
(
γ2 + γσd

CLSIσ

)
︸ ︷︷ ︸

time discretization error

+O(exp(−γCLSIσS))︸ ︷︷ ︸
optimization error

.

• Expectation is taken over the randomness in initialization and noise at each iteration.
• CLSI = Θ(σ−1 exp(−ζ−1σ−1

√
d)) describes the ’difficulty‘ of learning µ∗.

• It reflects the curse of dimensionality .
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Mean-field neural networks in 2SLS



Mean-field perspective of 2SLS

• Two-stage least squares (2SLS)

Stage I: Z ∗(X ) = argmin
Z ∈(Rdz )Nx

1

2
Eρ

[
(h(z,Z )− h(x,X ))2

]
,

Stage II: X ∗ = argmin
X ∈(Rdx )Nz

1

2
Eρ

[
(h(z,Z ∗(X ))− y)2

]
.

(1)

• h(x,X ) = 1
Nx

∑Nx
i=1Ψx(x

(i)) where X = [x (1), . . . , x (Nx )] ∈ (Rdx )Nx are the network
parameters and x is the network input.

• h(z,Z ) = 1
Nz

∑Nz
i=1Ψz(z

(i)) where Z = [z(1), . . . , z(Nz )] ∈ (Rdz )Nz are the network
parameters and z is the network input.

• ρ is the data distribution over (x, z, y).

• A shorthand notation: Ψx(x
(i)) = Ψ(x, x (i)) and Ψz(z

(i)) = Ψ(z, z(i)).
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Mean-field perspective of 2SLS

• Mean field neural networks
∫
Rdx Ψx(x)dµx(x) and

∫
Rdz Ψz(z)dµz(z) where µx , µz are

the mean-field limit of the hidden layer.

• ℓ2 and entropic regularizations for both stages:

Stage I: µ∗
z(µx) = argmin

µz∈P(Rdz )

1

2
Eρ[(∫ Ψzdµz − ∫Ψxdµx)

2] +
ζ1
2
Eµz [∥z∥2] + σ1Ent(µz),

Stage II: µ∗
x = argmin

µx∈P(Rdx )

1

2
Eρ[(∫ Ψzdµ

∗
z(µx)− y)2] +

ζ2
2
Eµx [∥x∥2] + σ2Ent(µx).

(Bi-MFLD)

• A bilevel optimization problem over P(Rdx ) and P(Rdz ).
• Popular methods like explicit gradient (autodiff) and implicit gradient (high-order

gradient) do not work.
• For fixed µx , Stage I µ∗

z (µx) can be solved via standard mean field Langevin dynamics.
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Mean-field perspective of 2SLS

• Some notation:

F1(µx , µz) =
1

2
Eρ[(∫ Ψz dµz − ∫ Ψx dµx)

2] +
ζ1
2
Eµz [∥z∥2]

F2(µx , µz) =
1

2
Eρ[(∫ Ψz dµz − y)2] +

ζ2
2
Eµx [∥x∥2].

• F1(µx , µz) = F1(µx , µz) + σ1Ent(µz) and F2(µx , µz) = F2(µx , µz) + σ2Ent(µx).
• Bilevel optimization problem is

Stage I: µ∗
z(µx) = argmin

µz∈P(Rdz )

F1(µx , µz), Stage II: µ∗
x = argmin

µx∈P(Rdx )

F2(µx , µ
∗
z(µx)).

Observations:
1. The partial Wasserstein gradients µx 7→ F1(µx , µz) and µx 7→ F2(µx , µz);

µz 7→ F1(µx , µz) and µz 7→ F1(µx , µz) are simple.
2. The nested Wasserstein gradient of µx 7→ F2(µx , µ

∗
z(µx)) is nasty.
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Mean-field perspective of 2SLS: Lagrangian formulation

• The bilevel optimization problem

µ∗
z(µx) = argmin

µz∈P(Rdz )

F1(µx , µz), µ∗
x = argmin

µx∈P(Rdx )

F2(µx , µ
∗
z(µx)). (Bilevel)

• A constrained optimization problem
• Stage I problem re-casted as a constraint.

min
µx ,µz

F2(µx , µz), F1(µx , µz)−F1(µx , µ
∗
z(µx)) ≤ ε. (ε-constrained)

• A Lagrangian optimization problem

(µ∗
x ,λ, µ

∗
z,λ) = arg min

µx ,µz
Lλ(µx , µz) := F2(µx , µz) + λ (F1(µx , µz)−F1(µx , µ

∗
z(µx))) .

(λ-penalty)

• When λ = +∞, it recovers the bilevel optimization problem.
• When λ < +∞, one needs to take into account an additional approximation error.
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Mean-field perspective of 2SLS: Lagrangian formulation

• Main challenge:

(µ∗
x ,λ, µ

∗
z,λ) = arg min

µx ,µz
Lλ(µx , µz)

= arg min
µx ,µz

F2(µx , µz) + λ (F1(µx , µz)−F1(µx , µ
∗
z(µx)))

Proposition 1 (Wasserstein gradient of Lλ)

Let µ∗
z(µx) = argminµz F1(µx , µz) be the solution to the stage I optimization. Then,

∇1Lλ(µx , µz) = ∇1F2(µx , µz) + λ∇1F1(µx , µz)− λ∇1F1(µx , µ
∗
z(µx)),

∇2Lλ(µx , µz) = ∇2F2(µx , µz) + λ∇2F1(µx , µz).

∇1 (resp. ∇2) denotes the Wasserstein gradient with the first (resp. second) argument.

• The Wasserstein gradient of the mapping µx 7→ F1(µx , µ
∗
z(µx)) only involves the

partial derivative with the first argument (envelope theorem).
• We avoid the nasty Wasserstein gradient of µx 7→ F2(µx , µ

∗
z(µx)). 22 / 37



Mean-field perspective of 2SLS: Lagrangian formulation

• Convexity of Lλ(µx , µz) = F2(µx , µz) + λ (F1(µx , µz)−F1(µx , µ
∗
z(µx))).

Observations:
1. The partial mapping µz 7→ Lλ(µx , µz) is convex, for any fixed µx ∈ P2(Rdx ).

2. The partial mapping µx 7→ Lλ(µx , µz) is not convex, for any fixed µz ∈ P2(Rdx ).
3. The joint mapping (µx , µz) 7→ Lλ(µx , µz) is not convex.

Question: How to exploit this partial convexity µz 7→ Lλ(µx , µz)?

• Innerloop: µ∗
z(µx) = argminµz F1(µx , µz), µ̃

∗
z(µx) = argminµz Lλ(µx , µz).

• Outerloop: µ∗
x ,λ = argminµx Lλ

(
µx , µ̃

∗
z(µx), µ

∗
z(µx)

)
.

• Noisy gradient descent!
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Mean-field perspective of 2SLS: Lagrangian formulation

• Inner-loop algorithm

µ∗
z(µx) = argmin

µz
F1(µx , µz) = argmin

µz
F1(µx , µz) + σ1Ent(µz),

µ̃∗
z(µx) = argmin

µz
Lλ(µx , µz) = argmin

µz
F2(µx , µz) + λF1(µx , µz) + λσ1Ent(µz).

• Fast convergence due to partial convexity of µz 7→ F1(µx , µz) and
µz 7→ F2(µx , µz) + λF1(µx , µz) for fixed µx .

Algorithm InnerLoop(µx , T , α, β, λ, σ1)

1: Initialize µZ ,0 =
1
Nz

∑Nz

j=1 δz(j)0
and µ̃Z ,0 =

1
Nz

∑Nz

j=1 δz̃(j)0
.

2: for t = 0, . . . ,T do
3: for i = 1, . . . ,Nz do

4: z
(i)
t+1 = z

(i)
t − α∇2F1(µx , µZ ,t)(z

(i)
t ) +

√
2ασ1 ξ

(i)
z,t .

5: z̃
(i)
t+1 = z̃

(i)
t − β∇2F2(µx , µ̃Z ,t)(z̃

(i)
t )− βλ∇2F1(µx , µ̃Z ,t)(z̃

(i)
t ) +

√
2βλσ1 ξ̃

(i)
z,t .

6: end for
7: end for
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Mean-field perspective of 2SLS: Lagrangian formulation

Assumption 1 (Bounded and smooth neural networks)

There exists a universal positive constant R such that supx∈Rdx ,x∈X |Ψx(x)| ≤ R and
supz∈Rdz ,z∈Z |Ψz(z)| ≤ R. Also, supx∈Rdx ,x∈X |∇xΨx(x)| ≤ R and
supz∈Rdz ,z∈Z |∇zΨz(z)| ≤ R.

• It works for two-layer neural networks with tanh/ReLU plus smooth output clipping.

Assumption 2 (Bounded target)

There exists a universal constant M such that the target random variable |Y | ≤ M and
|h◦(X )| ≤ M almost surely.

• Boundedness of |Y | can be relaxed to sub-Gaussian residual Y − (Th◦)(Z ).
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Mean-field perspective of 2SLS: Lagrangian formulation

Proposition 2 (Inner-loop convergence towards µ∗
z(µx) and µ̃∗

z(µx))

Suppose Assumption 1 and 2 hold. Given a fixed µx ∈ P2(Rdx ). Let Z = {z(i)}Nz
i=1 and

Z̃ = {z̃(i)}Nz
i=1 be the output of the inner-loop algorithm InnerLoop(µx , T , α, β, λ,

σ1). Denote µ
(Nz )
z and µ̃

(Nz )
z as the joint distribution of these Nz particles Z . Suppose

the step size satisfy α ≤ 1
ζ1

and β ≤ 1
λζ2

. For any T > 0,

σ1
Nz

KL
(
µ
(Nz )
z , (µ∗

z(µx))
⊗Nz

)
≤ R2

Nz
+

α2 + ασ1dz
CLSI,zσ1

+O(exp(−CLSI,zσ1αT ))

σ2
Nz

KL
(
µ̃
(Nz )
z , (µ̃∗

z(µx))
⊗Nz

)
≤ R2

Nz
+

β2 + βσ1dz
CLSI,zσ1

+O(exp(−CLSI,zσ1βT )).

• CLSI,z = Θ( ζ1σ1
exp(− R2

ζ1σ1

√
dz/π)).

• Direct application of mean-field results.
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Mean-field perspective of 2SLS: Lagrangian formulation

• Outer-loop algorithm

µ∗
x ,λ = argmin

µx
Lλ(µx , µ̃

∗
z(µx), µ

∗
z(µx)) = argmin

µx
Lλ(µx , µ̃

∗
z(µx), µ

∗
z(µx)) + σ2Ent(µx)

• Its Wasserstein gradient ∇Lλ(µx , µ̃
∗
z(µx))(x) equals (via envelope theorem)

∇1F2(µx , µ̃
∗
z(µx))(x) + λ(∇1F1(µx , µ̃

∗
z(µx))(x)−∇1F1(µx , µ

∗
z(µx))(x))

Algorithm Outerloop: F2BMLD (Fully-first order Bilevel MFLD)

1: Initialize µX ,0 =
1
Nx

∑Nx

j=1 δx (j)
0
.

2: for s = 0, . . . , S do
3: µ̃Z ,s , µZ ,s ← InnerLoop(µX ,s).
4: for i = 1, . . . ,Nx do

5:
x
(i)
s+1 = x (i)s − γ

(
∇1F2(µX ,s , µ̃Z ,s)(x

(i)
s ) + λ(∇1F1(µX ,s , µ̃Z ,s)(x

(i)
s )

−∇1F1(µX ,s , µZ ,s)(x
(i)
s ))

)
+
√

2γσ2ξ
(i)
x,s .

6: end for
7: end for
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Algorithm ✓ Theory ?

28 / 37



Mean-field perspective of 2SLS: Lagrangian formulation

Question: How to prove convergence µZ ,S = 1
Nx

∑Nx
i=1 δx(i)S

→ µ∗
x ,λ?

• The key is convexity!
• µx 7→ Lλ(µx , µ̃

∗
z(µx), µ

∗
z(µx)) is only weakly convex.

Lemma (Lower-bound on the Bregman divergence of Lλ)

Suppose Assumption 1 holds. Then, we have BLλ(µx , µ
′
x) ≥ −R3λ

4σ1
TV2(µx , µ

′
x).

• Lλ is more convex as σ1 increases yet less convex as λ increases.
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Mean-field perspective of 2SLS: Lagrangian formulation

Theorem 3 (Convergence bound )

Suppose Assumption 1 and 2 hold. Let c > 0 and assume that σ1σ2c ≥ 4R3λ. Suppose
the step size γ ≤ ζ−1

2 . Given a fixed λ > 0, for any number of iterations S ∈ N+, we have

H(S) ≲ exp (−σ2CLSI,xSγ) +
λR2

σ1Nx
+

λ2

(√
KL
Nz

+
√

K̃L
Nz

)
σ2CLSI,x

+
λ2(γ2+γσ2dx)

σ2CLSI,x
+ c2CLSI,x .

• KL and K̃L represents the inner-loop optimization error.
• c is a slack parameter arising from the weak convexity of Lλ.
• Define h∗,λ(x) = ∫ Ψx(x) dµ

∗
x ,λ(x) the global optimum mean field network. Define

ĥS(x) =
1
Nx

∑Nx
i=1Ψx(x

(i)
S ) where {x (i)S }Nx

i=1 are the output of F2BMLD.

∀x ∈ X , E
[(

ĥS(x)− h∗,λ(x)
)2]
≤
√

σ−1
2 H(S) +

λc

σ1σ2
+

λ

Nxσ1σ2
+

1

Nx
.

• The optimization bound wants small λ.
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Mean-field perspective of 2SLS: Generalization

Optimization theory:
We have proved that F2BMLD can indeed find the global optimum solution h∗,λ.

Statistical theory:
How well does h∗,λ generalize towards h◦ when given finite i.i.d samples over (x, z, y)?
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Mean-field perspective of 2SLS: Generalization

• Given m i.i.d samples {zi , xi}mi=1 ∼ PZX in stage I and n i.i.d samples
{zi , yi}ni=1 ∼ PZY in stage II:

F1(µx , µz) =
m∑
i=1

1

2m
(∫ Ψ(zi , z)dµz − ∫ Ψ(xi , x)dµx)

2 +
ζ1
2
Eµz [∥z∥2] + σ1Ent(µz),

F2(µx , µz) =
n∑

i=1

1

2n
(∫ Ψ(zi , z)dµ

∗
z(µx)− yi )

2 +
ζ2
2
Eµx [∥x∥2] + σ2Ent(µx).

• Recall that T : L2(PX )→ L2(PZ ) defined as T : f 7→ E[f (X ) | Z ] and NPIV:

E[Y | Z ] = E[h◦(X ) | Z ]. (NPIV)
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Mean-field perspective of 2SLS: Generalization

Assumption 3 (Stage II well-specifiedness)

h◦ belongs to a KL restricted Barron space BMx := {∫ Ψ(·, x)dµx(x) | KL(µx , νx) ≤ Mx},
where νx = N (0, ζ2σ

−1
2 Iddx ). That is, there exists a measure µ◦

x ∈ BMx such that
h◦(·) = ∫ Ψ(·, x)dµ◦

x .

Assumption 4 (Stage I well-specifiedness)

The conditional expectation T [∫ Ψ(·, x)dµx(x)](z) = ∫ E[Ψ(X , x) | Z = z] dµx(x)
belongs to a KL restricted Barron space BMz := {∫ Ψ(·, z)dµz(z) | KL(µz , νz) ≤ Mz},
where νz = N (0, ζ1σ

−1
1 Iddz ). That is, there exists a measure µ◦

z(µx) ∈ BMz such that
T [∫ Ψ(·, x)dµx(x)](z) = ∫ Ψ(·, z)dµ◦

z(µx).

• Mx ,Mz are universal constants that control the size of the Barron spaces.
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Mean-field perspective of 2SLS: Generalization

Theorem 4 (Generalization bound)

Suppose Assumption 1,2,3,4 hold. For λ > 0, let µ∗
x ,λ be the optimal solution to the

Lagrangian problem and h∗,λ(x) = ∫ Ψ(x, x) dµ∗
x ,λ(x) be its associated mean field neural

network. Then, with P
⊗(m+n)
XZY probability at least 1− 8δ,

EPZ

[(
(Th∗,λ)(Z )− (Th◦)(Z )

)2]
≲ σ2Mx + σ1Mz +

R2(R +M)2

σ1λ

+

√
Mz +

1
σ1

+ log(δ−1)

m
+

√
Mx +

1
σ2

+ log(δ−1)

n
.

• The generalization bound wants large λ so the Lagrangian problem is more faithful
to the original bilevel optimization problem.
• O(m− 1

2 ) and O(n− 1
2 ) arise from Rademacher complexity bound.

• Two-stage regression so we need both m, n→∞.
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Mean-field perspective of 2SLS: Optimization and Generalization

• Trade-off on λ, σ1, σ2 in terms of optimization and generalization.

• Optimization bound: E
[(

ĥS(x)− h∗,λ(x)
)2]

= O(λ2 + σ−1
1 + σ−1

2 ).

• Generalization bound: EPZ

[(
(Th∗,λ)(Z )− (Th◦)(Z )

)2]
= O(λ−1 + σ1 + σ2).

• Unfortunately, there does not exist a pair of λ, σ1, σ2 such that both errors vanish.
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Experiments: Offline RL on Cartpole
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Figure: Left: Comparison of DFIV and F2BMLD in terms of target policy value. Right: Comparison of
DFIV and F2BMLD training trajectories.

• λ is selected from a set {0.1, 1.0, 10.0}.
• More stable trajectory because of fully-first order gradient in optimization.
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