# CONDITIONAL BAYESIAN QUADRATURE



Zonghao Chen<sup>1,\*</sup>

Masha Naslidnyk<sup>1,\*</sup>

<sup>1</sup> University College London

Arthur Gretton<sup>1</sup> François-Xavier Briol<sup>1</sup>

**9** @Hudson19990518





## TL;DR

We propose conditional Bayesian quadrature (CBQ): a numerical algorithm for conditional/parametric expectations.

$$I(\theta) = \mathbb{E}_{X \sim \mathbb{P}_{\theta}}[f(X, \theta)] = \int_{\mathcal{X}} f(x, \theta) \mathbb{P}_{\theta}(\mathrm{d}x)$$

#### **Our Contributions:**

- 1. CBQ incorporates prior smoothness information
- $f(x,\cdot)$  lies in the Sobolev space  $\mathcal{W}_2^{s_f}(\mathcal{X})$ .
- $f(\cdot, \theta)$  lies in the Sobolev space  $\mathcal{W}_2^{s_I}(\Theta)$ .
- 2. CBQ has fast rate of convergence.

$$\left\|\hat{I}_{ ext{CBQ}} - I
ight\|_{L^2(\Theta)} = \mathcal{O}\left(N^{-rac{s_f}{d}}
ight) + \mathcal{O}\left(T^{-rac{1}{4}}
ight)$$

3. CBQ gives finite-sample Bayesian uncertainty.



Full paper & code:

https://github.com/hudsonchen/CBQ

# Observed samples



# Conditional Bayesian Quadrature

#### Bayesian Quadrature

A probabilistic numerical integration algorithm based on Gaussian process regression.

$$\hat{I}_{\text{BQ}} = \mathbb{E}_X[k_{\mathcal{X}}(X, x_{1:N})]k_{\mathcal{X}}(x_{1:N}, x_{1:N})^{-1}f(x_{1:N})$$

#### Conditional Bayesian Quadrature

- •Stage I: Bayesian quadrature is employed to obtain BQ posterior means  $\hat{I}_{\mathsf{BQ}}(\theta_1),\cdots,\hat{I}_{\mathsf{BQ}}(\theta_T)$  and posterior variances  $\sigma_{\mathsf{BQ}}^2(\theta_1), \cdots, \sigma_{\mathsf{BQ}}^2(\theta_T)$ .
- •Stage II: Heteroscedastic GP regression is performed over the outputs from Stage I to give a GP posterior mean:  $\hat{I}_{CBQ}(\theta)$  and covariance  $\sigma_{CRO}^2(\theta)$ .

## **CBQ** Estimator:

$$\hat{I}_{CBQ}(\theta) := k_{\Theta}(\theta, \theta_{1:T})^{\top} (k_{\Theta}(\theta_{1:T}, \theta_{1:T}) + \sigma_{BQ}^2(\theta_{1:T}))^{-1} \hat{I}_{BQ}(\theta_{1:T})$$

#### Main Theorem

Suppose the following assumptions hold:

- 1. Compact domains  $\mathcal{X} \subset \mathbb{R}^d$  and  $\Theta \subset \mathbb{R}^p$ .
- 2. The kernels  $k_{\mathcal{X}}$  and  $k_{\Theta}$  are Matérn kernels of smoothness  $s_{\mathcal{X}} > d/2$  and  $s_{\Theta} > p/2$ .
- 3. The function  $x \mapsto f(x,\theta)$  is of smoothness at least  $s_{\mathcal{X}}$ ,  $\theta \mapsto I(\theta)$  is of smoothness at least  $s_{\Theta}$ .
- 4. Other regularity assumptions.

For sufficiently large N, T, with probability  $\geq 1 - \delta$ ,  $\|\hat{I}_{\text{CBQ}} - I\|_{L^{2}(\Theta)} \le C_{0}(\delta) N^{-\frac{s_{\mathcal{X}}}{d} + \varepsilon} + C_{1}(\delta) T^{-\frac{1}{4}}.$ 

# **Empirical Evaluations**

- Bayesian sensitivity analysis.
- Susceptible-Infectious-Recovered (SIR) model
- Option pricing in mathematical finance.
- Uncertainty decision making.



#### Faster rate in N!