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TL;DR

We propose a new Wasserstein gradient flow of
a de-regularization of maximum mean discrepancy
(DrMMD).
•Generative modeling where π is known with M
i.i.d samples {yi}Mi=1.
1. DrMMD interpolates between MMD2 and χ2-
divergence.
2. DrMMD flow admits tractable finite sample
implementations.
3. DrMMD flow enjoys global convergence in KL
divergence.
4. DrMMD flow theoretically justify using adaptive
kernels in MMD based generative models.
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•Tπ : L2(π) → L2(π), f 7→
∫
k(x, ·)f(x)dπ(x) is

the kernel integral operator.
•(Tπ + λ)−1Tπ is Tikhonov regularization.
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DrMMD Flow (µt)t≥0

Continuity Equation

∂tµt +∇ · (µtvt) = 0, vt = (1 + λ)∇hµt,π

hµt,π = (Σπ + λ)−1 (mµ −mπ).

Here, Σπ : H 7→ H with Σπ = EX∼π[k(X, ·) ⊗
k(X, ·)] is the kernel covariance operator. mπ =
EX∼π[k(X, ·)] ∈ H is the kernel mean embedding.

Tractable finite-sample implementation
•Both the covariance operator Σπ and the embed-
ding mπ admit consistent finite-sample estimators.

•Given empirical distributions µ̂ = 1
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∑N
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i=1 yi. Given the Gram matrices Kxx ∈

RN×N , Kyy ∈ RM×M , Kxy ∈ RN×M .
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•Unlike diffusion models or flow matching, the ve-
locity field ∇hµ̂,π̂ of DrMMD flow is available in
closed form and does not need to be learned.

Empirical Evaluations

Global Convergence

Ass. 1.k : Rd×Rd → R is bounded, continuous
and c0-universal. The kernel has bounded first-
and second-order derivatives.

Ass. 2.π ∝ exp(−V ) is Poincaré with CP .

Continuous-time convergence

Suppose dµt

dπ − 1 ∈ Ran(T r
π) with r > 0 with a

pre-image qt, ∥∇(log π)⊤∇(dµt

dπ )∥L2(π) ≤ J and

∥∆(dµt

dπ )∥L2(π) ≤ I. Then,

∂tKL (µt∥π) ≤ −C−1
P KL (µt∥π) + λr(J + I).

•Recovers χ2 flow convergence whe λ = 0.
•r > 0 tells the regularity of DrMMD flow.

Discrete-time convergence

Ass. 3.π ∝ exp(−V ) with HV ≤ β.

KL (µn+1∥π)− KL (µn∥π) ≤ −C−1
P χ2 (µn∥π) γ

+ γλrQ(J + I)︸ ︷︷ ︸
Approximation error

+ γ2λ−1βχ2 (µn∥π)︸ ︷︷ ︸
Discretization error

.

•γ > 0 is the step size.
•Trade-off between Approximation error and time-
discretization error.

•Adaptive regularization λn ∝ χ2 (µn∥π)
1

r+1

•To reach error KL (µn∥π) ≤ δ, it takes n =
O((1δ)

r+1
r log 1

δ) iterations.
• In contrast, Langevin Monte Carlo takes n =
O((1δ) log

1
δ) iterations.


