DE-REGULARIZED MAXIMUM MEAN DISCREPANCY GRADIENT FLOW

Zonghao Chen¹

Aratrika Mustafi²

Pierre Glaser¹

Anna Korba 3

Arthur Gretton¹

Bharath K. Sriperumbudur²

9 @Hudson19990518

 1 University College London 2 Pennsylvania State University 3 ENSAE, CREST, IP Paris

TL;DR

We propose a new Wasserstein gradient flow of a de-regularization of maximum mean discrepancy (DrMMD).

- ullet Generative modeling where π is known with Mi.i.d samples $\{y_i\}_{i=1}^M$.
- 1. DrMMD interpolates between MMD^2 and χ^2 divergence.
- 2. DrMMD flow admits tractable finite sample implementations.
- 3. DrMMD flow enjoys global convergence in KL divergence.
- 4. DrMMD flow theoretically justify using adaptive kernels in MMD based generative models.

$$MMD^{2} = \left\| \mathcal{T}_{\pi}^{\frac{1}{2}} \left(\frac{d\mu}{d\pi} - 1 \right) \right\|_{L^{2}(\pi)}^{2}, \quad \chi^{2} = \left\| \frac{d\mu}{d\pi} - 1 \right\|_{L^{2}(\pi)}^{2}$$

$$DrMMD = (1 + \lambda) \left\| \left((\mathcal{T}_{\pi} + \lambda)^{-1} \mathcal{T}_{\pi} \right)^{\frac{1}{2}} \left(\frac{d\mu}{d\pi} - 1 \right) \right\|_{L^{2}(\pi)}^{2}$$

- $ullet \mathcal{T}_\pi: L^2(\pi) o L^2(\pi), f \mapsto \int k(x, \cdot) f(x) \mathrm{d}\pi(x)$ is the kernel integral operator.
- $(\mathcal{T}_{\pi} + \lambda)^{-1}\mathcal{T}_{\pi}$ is Tikhonov regularization.

Accepted (minor revision) to JMLR

DrMMD Flow $(\mu_t)_{t>0}$

Continuity Equation

$$\partial_t \mu_t + \nabla \cdot (\mu_t v_t) = 0, \quad v_t = (1 + \lambda) \nabla h_{\mu_t, \pi}$$
$$h_{\mu_t, \pi} = (\Sigma_{\pi} + \lambda)^{-1} (m_{\mu} - m_{\pi}).$$

Here, $\Sigma_{\pi}:\mathcal{H}\mapsto\mathcal{H}$ with $\Sigma_{\pi}=\mathbb{E}_{X\sim\pi}[k(X,\cdot)\otimes$ $k(X,\cdot)$ is the kernel covariance operator. $m_\pi=$ $\mathbb{E}_{X \sim \pi}[k(X, \cdot)] \in \mathcal{H}$ is the kernel mean embedding.

Tractable finite-sample implementation

- ullet Both the covariance operator Σ_{π} and the embedding m_{π} admit consistent finite-sample estimators.
- Given empirical distributions $\hat{\mu} = \frac{1}{N} \sum_{i=1}^N x_i$ and $\hat{\pi} = \frac{1}{M} \sum_{i=1}^{M} y_i$. Given the Gram matrices $K_{xx} \in \mathbb{R}^{N \times N}$, $K_{yy} \in \mathbb{R}^{M \times M}$, $K_{xy} \in \mathbb{R}^{N \times M}$.

$$h_{\hat{\mu},\hat{\pi}}(\cdot) = \frac{1}{N\lambda} k(\cdot, x_{1:N}) 1_N - \frac{1}{M\lambda} k(\cdot, y_{1:M}) 1_M - \frac{1}{M\lambda} k(\cdot, y_{1:M}) (M\lambda + K_{yy})^{-1} K_{yx} 1_N + \frac{1}{M\lambda} k(\cdot, y_{1:M}) (M\lambda + K_{yy})^{-1} K_{yy} 1_M.$$

• Unlike diffusion models or flow matching, the velocity field $abla h_{\hat{\mu},\hat{\pi}}$ of DrMMD flow is available in closed form and does not need to be learned.

Empirical Evaluations

Global Convergence

Ass. 1. $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is bounded, continuous and c_0 -universal. The kernel has bounded firstand second-order derivatives.

Ass. 2. $\pi \propto \exp(-V)$ is Poincaré with C_P .

Continuous-time convergence

Suppose $\frac{\mathrm{d}\mu_t}{\mathrm{d}\pi}-1\in\mathrm{Ran}(T^r_\pi)$ with r>0 with a pre-image q_t , $\|\nabla(\log\pi)^\top\nabla(\frac{d\mu_t}{d\pi})\|_{L^2(\pi)} \leq \mathcal{J}$ and $\|\Delta(\frac{d\mu_t}{d\pi})\|_{L^2(\pi)} \leq \mathcal{I}$. Then,

$$\partial_t \mathrm{KL}\left(\mu_t \| \pi\right) \leq -C_P^{-1} \mathrm{KL}\left(\mu_t \| \pi\right) + \lambda^r (\mathcal{J} + \mathcal{I}).$$

- Recovers χ^2 flow convergence whe $\lambda=0$.
- r > 0 tells the regularity of DrMMD flow.

Discrete-time convergence

Ass. $3.\pi \propto \exp(-V)$ with $HV \leq \beta$.

$$\begin{aligned} & \text{KL} \left(\mu_{n+1} \| \pi \right) - \text{KL} \left(\mu_n \| \pi \right) \leq - C_P^{-1} \chi^2 \left(\mu_n \| \pi \right) \gamma \\ & + \underbrace{\gamma \lambda^r Q(\mathcal{J} + \mathcal{I})}_{\text{Approximation error}} + \underbrace{\gamma^2 \lambda^{-1} \beta \chi^2 \left(\mu_n \| \pi \right)}_{\text{Discretization error}}. \end{aligned}$$

- $\bullet \gamma > 0$ is the step size.
- Trade-off between Approximation error and timediscretization error.
- Adaptive regularization $\lambda_n \propto \chi^2 \left(\mu_n \|\pi\right)^{\frac{1}{r+1}}$
- •To reach error $\mathrm{KL}(\mu_n \| \pi) \leq \delta$, it takes n = $\mathcal{O}((\frac{1}{\delta})^{\frac{r+1}{r}}\log\frac{1}{\delta})$ iterations.
- •In contrast, Langevin Monte Carlo takes n= $\mathcal{O}(\frac{1}{\delta})\log\frac{1}{\delta}$ iterations.