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DrMMD Flow (1)

TL;DR

We propose a new Wasserstein gradient flow of
a de-regularization of maximum mean discrepancy

(DrMMD).

« Generative modeling where 7 is known with M
.i.d samples {y;}:,

1. DrMMD between MMD* and y*-

divergence.
2. DrMMD ftlow admits tractable finite sample

implementations.

3. DrMMD ftlow enjoys global convergence in KL
divergence.

4. DrMMD tlow theoretically justify using

kernels in MMD based generative models.
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Convex1ty

Finite- sample

:
MMD2 = |72 (dﬂ 1> &= -
" dr L2(r) R D7 C)

DrMMD =

(14 A) (mw—ln)%(gg 1)

077T : LQ( ) — L2 f —> f]f
the kernel mtegral operator.
o (T + \)"'T is Tikhonov regularization.
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r)dmw(x) is

Continuity Equation
O +V - (pvy) =0, vy = (1 + )\)Vh”m
hpr = (Br + )‘)—1 (M — M),
Here, >, : H — H with X, = Ex|k(X, ) ®
k(X,-)| is the kernel covariance operator. m, =

Cx~nk(X, )] € H is the kernel mean embedding.

Tractable finite-sample implementation
« Both the covariance operator >, and the embed-
ding m, admit consistent finite-sample estimators.
. Given empirical distributions i1 = %22{1 T; and
T = ﬁZi\i y;. Given the Gram matrices K, €
RNXN, Kyy c RMXM, ny c RNXM_
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« Unlike diffusion models or flow matching, the ve-
locity field VA » of DrMMD ftlow is available in

closed form and does not need to be learned.
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Empirical Evaluations
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Global Convergence

Ass. 1.k RYx R? — R js bounded. continuous
and co-universal. The kernel has bounded first-
and second-order derivatives.

Ass. 2.1 x exp(—V') is Poincaré with C'p.

Continuous-time convergence
Suppose i‘ﬁ 1 € Ran(T") with » > 0 with a
pre-image ¢, HV(logW)TV(%)HLz(W) < J and
|A(L | o) < Z. Then,

OKL (pul|w) < —Cp KL (pel|m) + X'(T +I).

. Recovers v flow convergence whe \ = 0.
o7 > () tells the regularity of DrMMD tlow.
Discrete-time convergence

Ass. 3.7 x exp(—V) with HV < 3.

KL (ptnllm) = KL (pal|7) < =Cp X (pnllm)

+ AN QT +I) +7° XX (7).
S

Approximation error Discretization error

«v > () Is the step size.

o [rade-off between Approximation error and time-
discretization error. |

. regularization \,, o< x* (ft,||7)

o« To reach error KL (p,||m) < 9, it takes n

r+1 . .

O((%)% log 5) iterations.

In contrast, Langevin Monte Carlo takes n
O((5) log 5) iterations.



