Conformal Counterfactual Inference under Hidden Confounding

Zonghao Chen^{1,*} Ruocheng Guo^{2,*} Jean-François Ton² Yang Liu²

¹ University College London

² ByteDance Research

TL; DR

- We propose a new algorithm, based on **conformal prediction**, to construct **confidence intervals** for heterogenous causal effects with marginal coverage guarantees, even under hidden confounding.
- Coverage: For a pre-specified target coverage α , we have

$$1 - \alpha \le \mathbb{P}\left(y \in C\left(x\right)\right) \le 1 - \alpha + \frac{1}{n}$$

• Efficiency: Width of C(x).

- **Our Methodology: wTCP-DR**
- Our proposed method <u>weighted Transductive Conformal Prediction with</u> Density Ratio estimation (wTCP-DR).
- n observational and m interventional samples and the test sample is x_{n+m+1} .

$$\begin{aligned} &(x_i^O, y_i^O)_{i=1}^n \sim p^O(x, y) = p^O(y \mid x, t) p(x \mid t) \\ &x_i^I, y_i^I)_{i=n+1}^{n+m} \sim p^I(x, y) = p^I(y \mid x, t) p(x) \end{aligned}$$

Our Contributions

- Our method constructs confidence intervals for heterogenous causal effects through weighted conformal prediction (WCP).
- We overcome hidden confounding through density-ratio adjustments given access to a small fraction of interventional data.
- We verify our method across synthetic and real-world data, including recommendation systems, in terms of both coverage and efficiency.

Naive Method

• Only uses m interventional data $(x_i^I, y_i^I)_{i=n+1}^{n+m} \sim p^I(x, y)$. • Has wide confidence interval. (Efficiency NO) Has marginal coverage guarantee. (Coverage YES)

WCP (Lei et al, 2021)

- Combines m interventional data $(x_i^I, y_i^I)_{i=n+1}^{n+m} \sim p^I(x, y)$ and n observational data.
- Learns covariate shift adjustment (weights w) through propensity score estimation.
- Ignores hidden confounding.
- Has narrow confidence interval. (Efficiency YES)
- Has marginal coverage guarantee. (Coverage NO)

wTCP-DR (Ours)

• Combines *m* interventional data $(x_i^I, y_i^I)_{i=n+1}^{n+m} \sim p^I(x, y)$ and *n* observational data.

A Motivating Example

- What is the effect of the treatment T (pills or surgery) on the outcome Y (recovery rate), given both observed confounding X (severity of disease) and unobserved confounding U (types of disease)?
- For an individual *i*, what is the estimated heterogenous treatment effect? What is the confidence interval of the estimate?

Weighted Transductive Conformal Prediction (wTCP)

- Learns covariate shift adjustment (weights w) through density ratio estimation.
- A data-driven approach to adjust for hidden confounding.
- Has narrow confidence interval. (Efficiency YES)
- Has marginal coverage guarantee. (Coverage YES)
- Transductive conformal prediction (TCP) is computationally more expensive than split conformal prediction (SCP).
- We propose two cheaper variants of wTCP-DR: wSCP-DR(inexact) and wSCP-DR(exact).

Experimental Results

Synthetic Dataset

Method	Coverage $Y(0)$ \uparrow	Interval $Y(0) \downarrow$	Coverage $Y(1)$ \uparrow	Interval $Y(1) \downarrow$	Coverage ITE ↑	Interval ITE ↓
wSCP-DR(Inexact)	0.891 ± 0.026	0.414 ± 0.008	0.889 ± 0.019	0.421 ± 0.013	0.942 ± 0.017	0.835 ± 0.016
wSCP-DR(Exact)	0.934 ± 0.026	0.496 ± 0.010	0.935 ± 0.023	0.503 ± 0.010	0.957 ± 0.018	0.998 ± 0.015
wTCP-DR	0.899 ± 0.028	0.386 ± 0.013	0.923 ± 0.015	0.576 ± 0.066	0.953 ± 0.015	0.962 ± 0.074
WCP	0.572 ± 0.039	0.222 ± 0.007	0.608 ± 0.042	0.227 ± 0.009	0.710 ± 0.027	0.449 ± 0.012
Naive	0.932 ± 0.018	0.508 ± 0.042	0.930 ± 0.023	0.560 ± 0.049	0.952 ± 0.018	1.068 ± 0.098

Recommendation Datasets: Yahoo and Coat

- A merged dataset $\mathcal{D} = \{(x_i, y_i)_{i=1}^n \sim P_{X,Y}\} \cup \{(x_i, y_i)_{i=n+1}^{n+m} \sim P'_{X,Y}\}.$ • Define weight functions w(x, y) = 1 if $(x, y) \sim P_{X,Y}$ and $w(x,y) = \frac{dP_{X,Y}}{dP'_{X,Y}}(x,y) \text{ if } (x,y) \sim P'_{X,Y}.$
- $(p_i)_{i=1}^{|\mathcal{D}|}$ is the "normalized" weight functions.
- For a test data $x \in P'_X$ and $\bar{y} \in \mathcal{Y}$, augment $\overline{\mathcal{D}} = \mathcal{D} \bigcup \{x, \bar{y}\}$. Fit a regressor $\bar{\mu}$ on $\bar{\mathcal{D}}$, compute the conformity scores $s(x_i, y_i) = |\bar{\mu}(x_i) - y_i|$.
- The weighted empirical distribution of conformity scores.

$$\widehat{F} = \sum_{i=1}^{|\mathcal{D}_c|} p_i \delta_{s(x_i, y_i)}$$

• The conformal interval is $C(x) = \{\overline{y} \in \mathcal{Y} : s_x^{\overline{y}} \le q_{\widehat{F}}\}$, where $q_{\widehat{F}} = \text{Quantile}(1 - \alpha; \widehat{F}).$

	Yal	100	Coat		
Method	Coverage ↑	Interval 🗼	Coverage ↑	Interval ↓	
wSCP-DR(Inexact)	0.892 ± 0.019	4.353 ± 0.019	0.919 ± 0.008	3.787 ± 0.045	
wSCP-DR(Exact)	0.952 ± 0.001	5.140 ± 0.001	0.959 ± 0.001	4.565 ± 0.228	
wSCP-DR*(Inexact)	0.892 ± 0.020	4.353 ± 0.020	0.919 ± 0.008	3.789 ± 0.046	
wSCP-DR*(Exact)	0.952 ± 0.001	5.140 ± 0.001	0.960 ± 0.001	4.571 ± 0.233	
WCP-NB	0.825 ± 0.002	4.036 ± 0.002	0.912 ± 0.005	3.635 ± 0.040	
Naive	0.899 ± 0.001	6.047 ± 0.001	0.896 ± 0.003	7.725 ± 0.018	

Full paper: https://arxiv.org/abs/2405.12387 Code: https://github.com/rguo12/KDD24-Conformal

