

NESTED EXPECTATIONS WITH KERNEL QUADRATURE Zonghao Chen¹ Masha Naslidnyk¹ François-Xavier Briol¹ **GHudson19990518** ¹University College London

TL;DR

We are interested in estimating nested expectation.

$:= \mathbb{E}_{\theta \sim \mathbb{Q}} \left[f \left(\mathbb{E}_{X \sim \mathbb{P}_{\theta}} \left[g(X, \theta) \right] \right) \right] $	
$= \int_{\Theta} f\left(\int_{\mathcal{X}} g(x,\theta) p_{\theta}(x) dx\right)$	q(heta)d heta.

inner conditional expectation

outer expectation with T samples in Θ and N samples in \mathcal{X} .

Our Contributions:

1. We propose a novel estimator called *nested* kernel quadrature (NKQ)

Full paper & code: https://www.arxiv.org/pdf/2502.18284 Nested Kernel Quadrature

Kernel Quadrature

Consider $J = \mathbb{E}_{X \sim \pi}[h(X)]$. Suppose $h \in \mathcal{H}_{\mathcal{X}}$. KQ is a quadrature algorithm based on kernel interpolation (regression). Denote the kernel mean embedding as $\mu_{\pi}(\cdot) = \mathbb{E}_{X \sim \pi}[k_{\mathcal{X}}(X, \cdot)]$ and the Gram matrix as $K_{\mathcal{X}}$.

 $\hat{J}_{\mathrm{KQ}} = \mu_{\pi}(x_{1:N})(\boldsymbol{K}_{\mathcal{X}} + N\lambda \mathbf{I}_{N})^{-1}h(x_{1:N})$

Nested Kernel Quadrature

•**Stage I**: Estimate T inner expectations $J(\theta_t) =$ $\mathbb{E}_{X \sim \mathbb{P}_{\theta_{t}}}[g(X, \theta_{t})]$ with KQ.

 $\hat{J}_{\mathrm{KQ}}(\boldsymbol{\theta}_{t}) = \mu_{\mathbb{P}_{\boldsymbol{\theta}_{t}}}(x_{1:N})(\boldsymbol{K}_{\mathcal{X}}^{(t)} + N\lambda_{\mathcal{X}}\mathbf{I}_{N})^{-1}g(x_{1:N}^{(t)}, \boldsymbol{\theta}_{t})$ •Stage II: Denote $\hat{F}_{KQ}(\theta_t) = f(\hat{J}_{KQ}(\theta_t))$ for $t = \{1, \ldots, T\}$. Estimate the outer expectation again with KQ as if $F_{KQ}(\theta_t)$ are the true observa-

tions!

 $\hat{I}_{\mathsf{NKQ}} := \mu_{\mathbb{O}}(\theta_{1:T})(\mathbf{K}_{\Theta} + T\lambda_{\Theta}\mathbf{I}_{T})^{-1}\hat{F}_{\mathsf{KQ}}(\theta_{1:T})$

Sample Efficiency

The number of function evaluations or samples required to ensure $|I - \hat{I}| \leq \Delta$. Smaller exponents rin Δ^{-r} indicate a more efficient method.

> NMC NQMC MLMC NKQ (Theorem)

Suppose the following assumptions hold: 1. The kernels $k_{\mathcal{X}}$ and k_{Θ} are Sobolev kernels of smoothness $s_{\chi} > d_{\chi}/2$ and $s_{\Theta} > d_{\Theta}/2$. $2.D_{\theta}^{\beta}g(\cdot,\theta) \in W_2^{s_{\mathcal{X}}}(\mathcal{X})$ for all $\beta \in \mathbb{N}^{d_{\Theta}}$ with $|\beta| \leq s_{\Theta}$. $3.g(x,\cdot) \in W_2^{s_{\Theta}}(\Theta) \text{ and } \theta \mapsto p_{\theta}(x) \in W_2^{s_{\Theta}}(\Theta).$ 4. f has bounded derivatives up to and including order $s_{\Theta} + 1$. For large N, T, with probability $\geq 1 - 8e^{-\tau}$, $|\hat{I}_{\mathrm{NKQ}} - I| \leq \tau (N^{-\frac{s_{\mathcal{X}}}{d_{\mathcal{X}}}} (\log N)^{\frac{s_{\mathcal{X}}+1}{d_{\mathcal{X}}}} + T^{-\frac{s_{\Theta}}{d_{\Theta}}} (\log T)^{\frac{s_{\Theta}+1}{d_{\Theta}}})$

Empirical Evaluations

- •Synthetic Experiment.

- Bayesian Optimization.

Main Theorem

• Option pricing in mathematical finance.

• Uncertainty decision making in health economics.